Atlas of Medical Helminthology and Protozoology

P.L. Chiodini
A.H. Moody
D.W. Manser
Atlas of Medical Helminthology and Protozoology

P.L. Chiodini
A.H. Moody
D.W. Manser
Atlas of
Medical Helminthology and Protozoology
Atlas of Medical Helminthology and Protozoology

Peter L. Chiodini BSc PhD FRCP FRCPath
Consultant Parasitologist, Department of Clinical Parasitology, The Hospital for Tropical Diseases, Honorary Professor, The London School of Hygiene and Tropical Medicine, London, UK

Anthony H. Moody MPhil MiBiol C.Biol FIBMS
Laboratory Manager, Department of Clinical Parasitology, The Hospital for Tropical Diseases, London, UK

David W. Manser BSc MSc FIBMS
Biomedical Scientist, Department of Clinical Parasitology, The Hospital for Tropical Diseases, London, UK

Illustrated by Robert Britton
Preface

Since this atlas was first published, major advances in immunology and molecular biology have transformed our understanding of the parasitic diseases which affect humans. The programme to eradicate Guinea worm is well advanced and real progress is being made towards a malaria vaccine. However, none of the parasites described in the first edition have yet been consigned to history. Indeed, *Cyclospora* and the microsporidia are newly recognised as important human pathogens even since the third edition, and in some geographical areas the malaria situation is worse, with the spread of multi-drug resistant *Plasmodium falciparum* malaria. There is a great deal left to be done.

Effective action against parasitic disease requires a team approach, including epidemiologists, biologists, diagnostic laboratory workers and clinicians. Common to all these disciplines is a need to understand the life cycles and morphology of the organisms they confront. It is hoped that this edition of the atlas will provide an appropriate introduction. The strong emphasis on diagnosis has been retained and since diagnostic parasitology still relies heavily on morphology, we have strengthened this area with the introduction of colour illustrations and photomicrographs.

We hope this book will help to kindle enthusiasm for the effort to control these parasites and the diseases they cause.

London 2001

P. L. C.
A. H. M.
D. W. M.
Acknowledgement

This atlas first originated from the Royal Army Medical College, London. The late Major-General HC Jeffrey and the late RM Leach wrote the first two editions. Colonel, later Major-General, GO Cowan undertook revision for the third edition and an abridged version of his introduction is included in this latest edition.
Contents

Introduction 1

Helminthology 3

Nematode (round) worms 5
Enterobius vermicularis (thread or pin worm) 5
Trichuris trichiura (whip worm) 6
Ascaris lumbricoides (round worm) 7
Hookworms 8
Strongyloides stercoralis 9
Trichinella spiralis 10
Wuchereria bancrofti (filariasis) 12
Brugia malayi 13
Loa loa (eye worm) 14
Onchocerca volvulus (blinding worm) 15
Other filarial worms 16
Dracunculus medinensis (Guinea worm) 17
Phasmid nematodes 18
Toxocara canis (dog round worm) 18
Toxocara cati (cat round worm) 18
Gnathostoma spinigerum 19
Cutaneous larva migrans (creeping eruption) 19

Cestode (tape) worms 20
Taenia solium (pork tape worm) 20
Taenia saginata (beef tape worm) 21
Dwarf tape worms 22
Hymenolepis nana 22
Hymenolepis diminuta (rat tape worm) 22
Diphyllobothrium latum (fish tape worm) 23
Larval forms of cestode infection in humans 24
Echinococcus granulosus (dog tape worm) 25
Echinococcus multilocularis 26

Trematode (flat) worms 27
Schistosoma species (blood flukes) 27
Schistosomiasis 29
Clonorchis sinensis, syn. Opisthorchis sinensis (Oriental liver fluke) 30
Opisthorchis felineus, Opisthorchis viverrini (cat liver fluke) 31
Fasciola hepatica (sheep liver fluke) 32
Fascioliopsis buski 33
Heterophyes heterophyes 34
Metagonimus yokogawai 34
Paragonimus westermani (lung fluke) 35

Common helminth ova 36

Protozoology 39

An outline classification of the parasitic protozoa of humans 40

Intestinal protozoa 41
Coccidia 41
Isospora belli 41
Cryptosporidium parvum 42
Cyclospora cayetanensis 43
Sarcocystis hominis 44
Microsporidia — general characteristics 45
Amoebae 47
Entamoeba histolytica (causing amoebiasis) 48
Other intestinal amoebae 54
Intestinal flagellates 56
Giardia intestinalis (G. lamblia) 56
Chilomastix mesnili 56
Trichomonas species 57
Intestinal ciliates 58
Balantidium coli 58

Tissue protozoa 59
Toxoplasma gondii 59

Malaria parasites 61
Life cycle 62
Morphology 63
Pathology and Clinical features 68
Laboratory diagnosis 69

Body-fluid and tissue flagellates 70
Leishmaniasis 71
Visceral leishmaniasis (kala azar) 72
Cutaneous leishmaniasis 73
Mucocutaneous leishmaniasis (espundia) 73
Diagnosis of leishmaniasis 73
Trypanosomiasis 74
African type: sleeping sickness 74
South American type: Chagas’ disease 76
Laboratory diagnosis of trypanosomiasis 78

Recapitulation 79
Luminal intestinal protozoa 79

Index 81
Introduction

The protozoan and the helminth, as regards tropical pathology, are in the ascendant.
Sir Patrick Manson (1899)

Parasites to the Ancient Greeks were those who sat at another’s table and paid for their meal with flattery. In biology, a parasite is an animal or plant living in or on another (the host) and drawing nourishment from it. This definition could include viruses, bacteria and fungi as well as protozoa and helminths, but historically the first group has been studied in microbiology, the second in parasitology. In tropical diseases, Manson’s dictum remains valid today.

Protozoa are small, unicellular organisms, which contain a nucleus and functional organelles. They reproduce quickly and asexually in the host, but may have a sexual phase of their life cycle in another host or vector.

Helminths (worms), which are metazoa, are larger, multicellular organisms, normally visible to the naked eye in their adult form. They reproduce sexually, usually within the host, and have pre-adult stages (ova, larvae) which live externally or in other hosts.

Transmission of parasites requires:
- a source or reservoir which may be human or animal
- a route of infection, e.g. ingestion, penetration or an insect vector.

The definitive host is that in which sexual reproduction occurs (e.g. mosquitoes for malaria) or in which the mature form of the parasite occurs (e.g. humans for African trypanosomiasis). An intermediate host is another animal essential to the completion of the life cycle (e.g. snails for schistosomiasis).

Parasites cause disease in humans by:
- mechanical effects, e.g. hydatid cyst
- invasion and destruction of host cells, as in malaria
- allergic or inflammatory immune reaction by the host to the parasite, e.g. toxocariasis and trypanosomiasis
- competition for specific nutrients, e.g. *Diphyllolobothrium latum* for vitamin B₁₂
- or there may be no obvious disease, as in *Taenia saginata* in humans.

Diagnosis in parasitic diseases depends on:
- a history of exposure and the clinical pattern of illness in the patient
- identification of the parasite itself in excreta (stool, urine), blood, or specific tissues
- indirect evidence of the parasite by testing the patient’s blood for antibodies
- detection of parasite antigens in clinical specimens
- detection of parasite DNA or RNA in clinical specimens.
Helminthology
Worms of medical importance

Nematodes (round worms)
- Unsegmented
- Possess mouth, oesophagus and anus
 - Important in further diagnosis
- In general, sexes separate
- Reproduction
 - Oviparous
 - Larviparous
- Infection by
 - Ingestion of eggs, or
 - Penetration of larvae through surfaces, or
 - Arthropod vector, or
 - Ingestion of encysted larvae

Cestodes (tape worms)
- Segmented
- Possess scolex, neck and proglottids
- Hermaphroditic
- Reproduction
 - Oviparous
 - Sometimes multiplication within larval forms
- Infection generally by encysted larvae

Trematodes (flukes)
- Unsegmented
- Leaf-like or cylindrical
- Generally hermaphroditic
- Reproduction (digenetic)
 - Oviparous
 - Multiplication within larval forms
- Infection mainly by larval stages entering intestinal tract, sometimes through skin
Nematode (round) worms

Enterobius vermicularis (thread or pin worm)

Life cycle

Maturation in humans 15–26 days

- **1.** Maturation in humans 15–26 days
- **2.** Caecum and lower ileum
- **3.** Gravid female crawls through anus to oviposit on perianal skin
- **4.** Mature in hours (viable for months)

Contaminated hands, food, drink, clothing, dust.

Autoinfection by scratching

Very frequent

Distribution

350 million infected worldwide, often group or institutional infection.

Pathology and Clinical features

Most infections are asymptomatic. Perianal itching may be troublesome. In females, migrating worms may cause pruritis vulvae or vaginitis. Rarely, urinary tract infection or appendicitis can occur. Migration into the peritoneal cavity has been recorded.

Laboratory diagnosis

Mild eosinophilia.

Ova can be recovered from the perianal area using clear adhesive tape or a cotton swab moistened with saline. Early morning collection before washing gives best recovery. In females, ova may occasionally be recovered from urine.
Trichuris trichiura (whip worm)

Life cycle

1. Contaminated soil, food, etc.
2. Maturation in soil 3-5 weeks
3. Mainly caecum
4. Maturation in humans 3 months
5. Contaminated soil, food, etc.

Pathology and Clinical features

Light infections may be asymptomatic. Heavy infections can result in the trichuris dysentery syndrome, rectal prolapse, rectal bleeding, anaemia, growth stunting and growth retardation in children.

Laboratory diagnosis

Eosinophilia may occur.
Ova may be recovered in faeces by concentration methods.

Distribution

1.3 billion infected worldwide.
Ascaris lumbricoides (round worm)

Life cycle

Hands carry infective ova from soil contaminated with human excreta, vegetables, dust, etc.

![Diagram of the life cycle of Ascaris lumbricoides](image)

- Morphology of ova in deposit
 - Normal form
 - Decoricated
 - Embryonated
 - Unfertilized

Larvae penetrate the mucosa, enter the lymphatics and venules, migrate to the right heart and lungs, break out into the alveoli, moult twice, ascend the respiratory tree and descend the oesophagus to mature in the intestine. Maturation in humans 2 months.

Mature in 1–2 weeks. Viable months–years

Pathology and Clinical features

Larvae can cause pneumonitis with eosinophilia. Adult worms can cause obstruction of the small intestine, bile ducts and trachea; also appendicitis, pancreatitis and peritonitis. Children may vomit up a bolus of adult worms, or cough up immature worms.

Laboratory diagnosis

Ova may be recovered from faeces by concentration methods. Rarely larvae can be found in sputum, and must be distinguished from those of *Strongyloides*. Eosinophilia is present in the larval invasion stage.

No specific serology is currently available.

Distribution

1.47 billion infected worldwide.
Pathology and Clinical features

Ground itch may follow skin penetration by filariform larvae. Pneumonitis can result from larval migration through the lungs. Adult worms in the jejunum ingest blood. Occult gastrointestinal bleeding occurs. Iron deficiency anaemia and its sequelae in heavy infections.

Laboratory diagnosis

Eosinophilia.

Ova may be recovered from faeces by concentration methods. Rhabditiform larvae may be seen in old faecal specimens and must be distinguished from *Strongyloides* by the appearance of the buccal cavity.

Distribution

900 million infected worldwide.
Strongyloides stercoralis

Life cycle

Eosinophilia may be present, but its absence does not exclude diagnosis. It is essential to examine fresh specimens. Rhabditiform larvae can be seen in faeces by direct microscopy or by concentration methods. Filariform larvae may also be seen in faeces, sputum and other body fluids, particularly in immunocompromised hosts. Faecal culture using charcoal is an important diagnostic method. Duodenal aspiration and the 'string test' are also recommended isolation methods. Serology by ELISA is useful in chronic infection.

Pathology and Clinical features

Skin penetration by larvae may cause local irritation. Migrating larvae can cause pneumonitis, and ectopic larvae can sometimes be found in the brain and other viscera. A characteristic serpiginous urticarial rash (larva currens) is seen on the trunk and buttocks.

Established infection may have no signs or symptoms, or present with larva currens alone. Diarrhoea, abdominal pain, bloating and sometimes malabsorption can be found.

The Strongyloides hyperinfection syndrome results from massive autoinfection with filariform larvae in the presence of severe immunosuppression or cachexia. Risk factors include steroid and/or cytotoxic therapy, HTLV1 infections, HIV infections, malignancy, severe malnutrition and other severe systemic disorders. Clinical features include diarrhoea, gastrointestinal haemorrhage or perforation, pneumonitis, Gram-negative bacterial meningitis or septicemia with high mortality.

Distribution

70 million infected worldwide.
Trichinella spiralis

Life cycle

A given host can be definitive or intermediate, but two hosts, both carnivores, are required to complete the cycle.

Others:
- horses
- dogs
- foxes
- cats
- wild pigs
- bears
- badgers
- seals
- Swill, offal, etc.

1. 1.5 x 0.045 mm
2. Female, Viviparous
3. Larva

Infected flesh is digested by gastric juices; the larvae are set free and develop into adults in duodenum. The gravid female burrows into mucosa and releases larvae which enter circulation and are disseminated throughout the body.

Laboratory diagnosis

Eosinophilia and high serum CPK in the acute phase. At the encystment stage, use muscle biopsy, muscle crush preparation and serology (IFAT or ELISA).

Distribution

50 million infected worldwide.
Pathology and Clinical features

Invasion

Intestinal inflammation leading to diarrhoea. Inflammatory response leading to periorbital oedema, haemorrhages under nails, muscle pains and myocarditis.

Dissemination

Migration may occur through any tissue but larval encystment is only in striated muscle. A granulomatous response develops elsewhere.

Localization

Especially muscles of respiration and tongue. Long term: eventual fibrosis and degeneration, resulting in calcification.

Organization

Laboratory diagnosis

At the diarrhoeal stage, adults and larvae may be found occasionally in faeces. Eosinophilia is high. At the encystment stage, use muscle biopsy, muscle crush preparation and serology (IFAT or ELISA).
Pathology and Clinical features

Adult worms in the lymphatic channels cause proliferation of the lining of the endothelium. Surrounding infiltration of eosinophils, macrophages, lymphocytes and giant cells causes filarial granulation tissue leading to obstruction, secondary infection, fibrosis and calcification. The results of this are acute lymphangitis, filarial abscess, lymphadenopathy, elephantiasis, hydrocele and chyluria. Tropical pulmonary eosinophilia (TPE) occurs in individuals who are hyper-responsive to filarial antigens, giving rise to nocturnal cough, wheeze and low-grade fever.

Laboratory diagnosis

Eosinophilia.

Microfilariae are found in peripheral blood collected between 10pm and 2am, or at midday for *W. bancrofti var. pacifica*. Thick blood films are examined stained or unstained, concentration by Knott's method will increase sensitivity. Filtration of citrated blood through a 5 micron pore size polycarbonate membrane is the method of choice.

Microfilariae can also be found in chylous exudate, chylous urine and in hydrocoele fluid.

Serology. ELISA is of use. Patients with TPE have high filarial antibody levels. A specific *W. bancrofti* antigen immunochromatographic test is now commercially available.

Wuchereria bancrofti (filariasis)

Life cycle

Adults

Development in mosquito

Maturation time

2-3 weeks

May survive several months

The larvae penetrate stomach, migrate to thoracic muscles, develop, then migrate to head, mature and now infective

Head bluntly rounded

9

80-100 x 0.25 mm

6

40 x 0.1 mm

Nocturnal periodicity

Microfilaria

230-320 x 10 μm

Tail pointed, free from nuclei

Sheathed

Distribution

90 million infected worldwide.

Pathology and Clinical features

Adult worms in the lymphatic channels cause proliferation of the lining of the endothelium. Surrounding infiltration of eosinophils, macrophages, lymphocytes and giant cells causes filarial granulation tissue leading to obstruction, secondary infection, fibrosis and calcification. The results of this are acute lymphangitis, filarial abscess, lymphadenopathy, elephantiasis, hydrocele and chyluria. Tropical pulmonary eosinophilia (TPE) occurs in individuals who are hyper-responsive to filarial antigens, giving rise to nocturnal cough, wheeze and low-grade fever.

Laboratory diagnosis

Eosinophilia.

Microfilariae are found in peripheral blood collected between 10pm and 2am, or at midday for *W. bancrofti var. pacifica*. Thick blood films are examined stained or unstained, concentration by Knott's method will increase sensitivity. Filtration of citrated blood through a 5 micron pore size polycarbonate membrane is the method of choice.

Microfilariae can also be found in chylous exudate, chylous urine and in hydrocoele fluid.

Serology. ELISA is of use. Patients with TPE have high filarial antibody levels. A specific *W. bancrofti* antigen immunochromatographic test is now commercially available.
Brugia malayi

Life cycle

Life cycle as for W. bancrofti (p. 12)

Mosquitoes

Mansonia
Anopheles
Aedes

Nocturnal periodicity

Microfilaria

170–260 x 5–6 μm

The adults resemble W. bancrofti but are smaller

Sheathed

Two discrete nuclei in tip of tail

Pathology and Clinical features

These are similar to those of Wuchereria, but Brugia more commonly affects the upper limbs. Hydrocoele, other genital lesions and chyluria are rare.

Laboratory diagnosis

As for Wuchereria bancrofti except for the specific antigen test.

Distribution

Nematode (round) worms 13
Loa loa (eye worm)

Life cycle

Microfilariae invade subcutaneous tissue and become adults. Adult filariae migrate under conjunctiva. Maturation time 1 year. Gravid adult discharges microfilariae into blood vessels. Eosinophilia. Calabar swelling lasting hours to days. Reaction to migrating adult. Microfilariae found in peripheral blood. Allergy: Chronic pruritus, papules may develop, skin may thicken, dead worms may form abscesses. Life span 1–15 years. Adults: ♂️ 30–36 x 0.6 mm, ♀️ 70 x 0.5 mm. Cuticular bosses. Chrysops. Diurnal periodicity. Microfilariae lose sheath, penetrate stomach wall, tissue, mature and migrate through body to mouthparts. Insect now infective. Maturation time 10–12 days.

Pathology and Clinical features

Transient subcutaneous (Calabar) swellings due to hypersensitivity to adult excretory products. The adult worm may appear under the conjunctiva and can be removed surgically. Symptoms include fatigue, chronic pruritus, rarely encephalopathy or nephropathy.

Laboratory diagnosis

Eosinophilia. Microfilariae are found in blood by day (between noon and 14:00 hours). Nucleopore membrane filtration or centrifugation after lysis of the blood (Knott’s method) can be used. Serology. ELISA detects antibodies to filarial antigens but is non-specific.

Distribution

33 million infected, mostly in the great river basins of Africa, e.g. Congo, Niger.
Onchocerca volvulus (blinding worm)

Life cycle

- **No periodicity**

- **Subcutaneous nodule**
 - Adult ♂ & ♀ filariae

- **Cellular reaction, then fibrosis**

- **Larvae mature to adults in subcutaneous tissue**

- **Microfilariae migrate to other sites, but do not enter bloodstream**

Pathology and Clinical features

Fibrous nodules develop round the adult worms, especially over the iliac crests. There may be some lymphatic obstruction; elephantiasis has been noted in Africa. The microfilariae cause itching, excoriation, urticaria, depigmentation, lichenification, ‘sowda’ and lymphadenopathy. When invading the eye, they can cause inflammatory lesions in any part of the eye such as sclerosing keratitis, choroidoretinitis and optic atrophy. Blindness may ensue.

Where microfilariae cannot be demonstrated, a Mazzotti test (DEC provocation test) can be useful.

Laboratory diagnosis

Eosinophilia.

Adult worms can be detected in excised nodules, microfilariae in the anterior chamber of the eye (slit lamp), skin snips and rarely in blood and urine.

Specific serodiagnosis by ELISA and PCR for parasite DNA on skin samples is in use.

Distribution

17 million infected worldwide.

Nematode (round) worms 15
Other filarial worms

These worms are much less pathogenic. Microfilariae of other species are unsheathed, may be found in the blood and tissues and differentiation from Wuchereria and Brugia is necessary. Filtration requires 3 micron pore size membrane, because of the smaller size of these microfilariae.

No periodicity.

Mansonella perstans
Found in Tropical Africa and the coasts of Central and South America. The vector is the midge Culicoides. Microfilariae can be found in the blood.

Mansonella streptocerca
Found in Africa. The vector is the midge Culicoides. Microfilariae can be found in the skin.

Mansonella ozzardi
Found in South America and the Caribbean. The vector is the midge Culicoides. Microfilariae can be found in the blood and skin.
Pathology and Clinical features

The gravid female causes itching, urticaria and a burning sensation. A blister appears which bursts to become an ulcer (usually leg) with discharge of embryos and some fibrosis. The adult female may be seen protruding from the ulcer. There is often secondary bacterial infection, and sometimes arthritis of the knee and ankle. Worms may fail to emerge, die and calcify.

Laboratory diagnosis

Eosinophilia.

Larvae may be found in fluid from the ulcer.

Distribution

70,000 infected worldwide.

Areas where dracunculiasis is endemic (based on reported cases in 1997). (Map reprinted from Weekly Epidemiological Record 1997; 72(6):33-35; prepared by WHO/UNICEF HealthMap Programme & CTD/DRA, Geneva: WHO.)
Phasmid Nematodes

Toxocara canis (dog round worm)

Morphology

Toxocara: body is bent ventrally. Toxascaris: body is bent dorsally.

Life cycle and occurrence

Ocular larva migrans (OLM) and visceral larva migrans (VLM) usually occur as distinct entities without overlap. VLM occurs in younger children and gives rise to fever, pneumonia and hepatomegaly. Myocarditis, convulsions, psychiatric changes or encephalopathy may occur. OLM presents as unilateral visual loss, often with squint. Retinal detachment, endophthalmitis or papillitis may occur.

Laboratory diagnosis

Eosinophilia.

Serology. Antibody detection by ELISA on serum. A vitreous sample may be required in OLM. Examination of environmental soil samples for ova by concentration techniques may be an aid to control.

Toxocara cati (cat round worm)

Life cycle

Human incompatible host. Visceral larva migrans (as above). Cycle like Ascaris or Toxocara canis in cats, not humans.
Gnathostoma spinigerum

Morphology
Stout, reddish-coloured worms

- **Male**: 11–25 mm
- **Female**: 25–54 mm

- Bulbous head
- Ring of hooklets
- Pair of fleshy lips round mouth
- Leaf-like spines anterior half
- Ovum in definitive host
 - Non-embryonated
 - Plug at one end
 - Superficially pitted
 - 67–70 x 38–40 μm

Life cycle and occurrence

- Cats and dogs
- Adults live in tumours in stomach wall
- Ova in faeces
- Hatches to larvae armed with spines
- Ingested by cyclops
- New host

Occasionally humans are infected by 3rd stage larvae but they cannot reach maturity. The larvae migrate to skin, subcutaneous tissue, muscle and brain.

- Cutaneous larva migrans
- Visceral larva migrans

Laboratory diagnosis
ELISA for antibody detection. Histology or morphology of worm if excised.

Distribution
South East Asia, mainly Thailand.

Cutaneous Larva Migrans (creeping eruption)
Caused by non-human hookworm larvae.

- Ancylostoma braziliense
- Ancylostoma caninum
- Uncinaria stenocephala

If they successfully invade humans, the intensely itchy infection lasts for months.

- Especially feet and legs, buttocks
 - Fail to penetrate the skin fully and burrow in lower epidermis
 - Move 1–2 cm per day
 - Zigzag tunnel
 - Fades opposite end

Nematode (round) worms 19
Cestode (tape) worms

Taenia solium (pork tape worm)

Life cycle

1. **Intermediate host** (liberated embryo) via bloodstream to tissue, especially muscle.
2. **Measly pork** (Definitive host and reservoir).
3. **Ovum** (31–43 μm).
4. **Cysticercus** is liberated, scolex evaginates, attaches itself to mucosa of small intestine. Develops to adult. Maturation time 3 months. Life span up to 25 years.

Pathology and Clinical features

Infection by larvae (cysticercosis). Cysterceri, generally multiple, may occur in any site but are more frequent in the brain and muscle. They excite reaction in the area, especially when they die, which manifests as inflammation, fibrosis and later some calcification. This leads to focal CNS syndromes, especially epilepsy.

Infection with adults. Often there can be no pathology, but there might be mild irritation of intestinal mucosa.

Laboratory diagnosis

Eosinophilia.

Larval infections. There are several methods, including histological examination of biopsy material, serology (IFAT, ELISA, EITB) and radiology (CT or MRI scan of the brain, X-ray of the thigh muscles).

Pure infection with the adult. Gravid segments, ova and scolex can be found in faeces. The uterine branches of the mature segments can be demonstrated by injection of Indian ink through the uterine pore.

Distribution

5 million people infected worldwide. *Taenia solium* is endemic in pig-rearing areas of the world where hygiene and animal husbandry are poor.
Taenia saginata (beef tape worm)

Life cycle

- Intermediate host, liberated embryo
- Motile segments rupture and release eggs
- Definitive host and reservoir
- Humans infected by eating undercooked beef

Pathology and Clinical features

Usually there is no pathology as *Cysticercus bovis* is unknown in humans. Occasionally there is vague alimentary upset.

Laboratory diagnosis

Gravid segments, ova and scolex can be found in faeces. Uterine branches of the mature segments may be seen in a crush preparation between two glass slides, or by Indian ink preparation, as in *T. solium*. Ova are also found on the perianal skin (on clear adhesive tape slides).

Distribution

Taenia saginata is found in beef-eating areas, especially in the tropics.
Hymenolepis nana

Life cycle

- Ova ingested in contaminated food via hands etc.
- Liberated embryo penetrates villus and becomes cysticercoid in 4 days.
- Cysticercoid re-enters lumen, attaches itself to mucosa and develops into adult worm in 10-12 days.
- Ova passed in faeces 30 days after infection.
- No intermediate host required.

Pathology and Clinical features

Often there are none, but with heavy infection there may be abdominal pain and diarrhoea. Anaemia and nervous symptoms, including dizziness and irritability, can occur in children.

Laboratory diagnosis

Eosinophilia may be present. Ova found in faeces.

Distribution

36 million people are infected worldwide.

Hymenolepis diminuta (rat tape worm)

Life cycle

- Embryo hatched in gut, penetrates intestinal wall, develops into cysticercoid in body cavity.
- Cysticercoid liberated, attaches itself to mucosa and develops to adult worm.
- Accidental ingestion by human of infected insect.
- Rat flea ingested by rodents.
- Intermediate host.

Pathology and Clinical features

Generally there is no effect on the host.

Laboratory diagnosis

Ova in faeces.

Distribution

Worldwide, but rare in humans.
Diphyllobothrium latum (fish tape worm)

Life cycle

- **Human infected by**: eating raw or undercooked fish
- **Maturation time**: 3 weeks
- **Life span**: several years
- **Reservoir**:
 - dogs
 - cats
 - many wild mammals

1st intermediate host:
- **Procercoid in cyclops**
- **Coracidium penetrates intestinal wall and develops into procercoid in body cavity**
- **Sparganosis (see p. 26)**
- **Coracidium ingested by**: Procercoid in cyclops

2nd intermediate host:
- **Plerocercoid in fish (Sparganum)**
- **Plerocercoid liberated in intestine, scolex evaginates and attaches itself to mucosa of small intestine**
- **Hatches in 9–12 days**

Ovum
- **70 x 45 µm operculated**

1st intermediate host:
- **Procercoid in cyclops**
- **Coracidium ingested by**: Procercoid in cyclops

2nd intermediate host:
- **Plerocercoid in fish (Sparganum)**
- **Plerocercoid liberated, penetrates intestinal wall, develops into Plerocercoid (sparganum) in muscle or viscera**

Cestode (tape) worms 23

Pathology and Clinical features

Generally there is none, but occasionally there can be megaloblastic anaemia (through absorption of vitamin B₁₂ by the worm).

Laboratory diagnosis

Eggs and gravid segments can appear in faeces. Megaloblastic anaemia (low serum B₁₂).

Distribution

16 million infected worldwide in eastern seaboard of Canada and America, Brazil, Baltic States, parts of West Africa, North Siberia and South East Asia.
Larval forms of cestode infection in humans

Sparganosis

Life cycle of such tapeworms

Sparganosis is caused by the extra-intestinal presence in the human body of larvae of non-human tapeworms of the genus *Spirometra*.

Human sparganosis by

Pathology and Clinical features

Infestation with living larvae causes a painful oedematous reaction. Dead larvae cause intense local inflammatory reactions. There are numerous eosinophils and there can be abscess formation. There can be ocular sparganosis in the soft tissues near the eye, resulting in severe damage. Invasion of the CNS may occur.

Types of spargana

Most Spargana do not proliferate in human tissues. *Sparganum proliferum* is a very rare parasite in which sparganum proliferates by lateral budding.

Laboratory diagnosis

Diagnosis of the disease is by examination of biopsy material or excised larvae.

Distribution

The Far East mainly but occasionally elsewhere.
Echinococcus granulosus (dog tape worm)

Life cycle

Echinococcus granulosus causes hydatid disease.

- **Cyst in offal, esp. liver**
- **Definitive host:** Dog and other canines
- **Intermediate host:** Sheep, cattle etc. and other herbivores
- **Definitive host:** Dog and other canines
- **Immature**
- **Mature**
- **Proglottids**
- **Gravid**
- **Length 3–8 mm**
- **Ovum 30–37 μm**

Hydatid cyst
- Surrounding host tissue reaction forming false capsule
- Laminated membrane
- Germinal membrane
- Brood capsule
- Scoleces
- Hydatid sand
 - Remains of germinal epithelium
 - Brood capsules
 - Protoscolices
- Cyst fluid
 - Sels
 - Enzymes
- Invaginated in cyst
- Evaginated on entry into host
- Contamination by food and fingers
- Human intermediate host
- Secondary seeding from ruptured cyst
- Liberated embryo penetrates mucosa, carried by blood stream to various sites

Intraosseous cyst
- Spreads along medulla by budding outside cyst.
- Semisolid; no fibrosis.
Echinococcus multilocularis

Life cycle

- **Host:** Foxes, wolves, etc.
- **Intermediate host:** Rodents

Pathology and Clinical features of hydatid disease

Echinococcus granulosus

Unilocular cysts. There is usually surrounding inflammatory reaction and fibrosis. After years, the cyst may die, shrink and calcify. There is general allergic reaction with eosinophilia, bronchospasm, etc. Pressure effects can cause local tissue damage and obstruction of natural channels. Rupture or leakage of the cyst can accentuate the allergic reaction. There can be anaphylactic shock and sometimes secondary implantation, for example in the peritoneal region. There can also be secondary infection with formation of abscess.

Osseus cysts. Usually there is no fibrosis although there is some cellular infiltration. Destruction of the bone can sometimes lead to spontaneous fracture.

Echinococcus multilocularis

Alveolar cysts. There are local pressure effects and allergy. Germinal epithelium can act like a neoplasm with local infiltration or distant metastases.

Laboratory diagnosis of hydatid disease

Use serological tests on serum (e.g. ELISA, complement fixation, counter current immunoelectrophoresis for Arc 5 or immunoblot). Microscopy of cyst fluid from operative specimens can be used to assess viability of protoscolices. Histological examination of a removed specimen is another possibility.

Distribution

1 million infected worldwide. *E. multilocularis* is rare in humans, but occurs in Northern Europe, Asia, North America and Arctic regions. *E. granulosus* is widespread in sheep-rearing areas of the world. Eradication is well advanced in Australia and New Zealand.
Trematode (flat) worms

Schistosoma species (blood flukes)

Life cycle for all species

![Diagram of life cycle for all species]

- **Development within snail host**: 4–8 weeks
 - Primary sporocysts
 - Secondary sporocysts
 - Developing cercariae

- **Ovum**: Few minutes
- **Miracidium**: 16 hours

- **Cercaria**: 1–3 days
 - Length: 375–500 \(\times \) 36–100 \(\mu \)m

Life cycle in humans

![Diagram of life cycle in humans]

- **Immature schistosomes**: Carried in circulation throughout body, generally only survive and mature in portal veins
- **Mature adults**: Migrate to pelvic or mesenteric venous plexuses, \(\sigma \) lays eggs in small venules
- **Ova**: 1. Pass through tissue to lumen of viscera and are voided
 2. Some gain general circulation and may land up anywhere
- **Cercariae**: Lose tails, penetrate skin of host in 3–5 minutes and enter circulation via lymphatics
Schistosoma species (blood flukes) (Continued)

Morphology

<table>
<thead>
<tr>
<th>Species</th>
<th>Ovary Location</th>
<th>Testes</th>
<th>Tegument</th>
<th>Terminal Spine</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. haematobium</td>
<td>Posterior half</td>
<td>4-5</td>
<td>Slightly tuberculated</td>
<td>112-170 x 40-70 μm</td>
<td>Bulinus</td>
</tr>
<tr>
<td>S. mansoni</td>
<td>Anterior half</td>
<td>8-9</td>
<td>Coarsely tuberculated</td>
<td>140-180 x 45-70 μm</td>
<td>Biomphalaria</td>
</tr>
<tr>
<td>S. japonicum</td>
<td>Central</td>
<td>6-8</td>
<td>Smooth</td>
<td>70-105 x 50-80 μm</td>
<td>Oncomelania</td>
</tr>
</tbody>
</table>

Distribution

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. haematobium</td>
<td>Bulinus</td>
<td>78 million</td>
</tr>
<tr>
<td>S. mansoni</td>
<td>Biomphalaria</td>
<td>57 million</td>
</tr>
<tr>
<td>S. japonicum</td>
<td>Oncomelania</td>
<td>69 million</td>
</tr>
</tbody>
</table>
Schistosomiasis

Pathology

Penetration of the skin by cercariae (1)
Skin penetration may not be apparent. Human and some non-
human Schistosoma species cause cercarial dermatitis
(swimmer’s itch). This manifests with papules, macules, vesicles
and intense itching.

Migration and maturation of immature worms (2)
There are general toxic and allergic symptoms including
urticaria with eosinophilia, fever, abdominal pain and tender
hepatosplenomegaly. This is known as Katayama or snail
fever.

Damage by eggs in tissue (3)
Resulting damage depends on the severity of the parasite
load. An inflammatory granuloma forms with epithelial, giant,
plasma and eosinophil cells and fibroblasts (Hoepli reaction).
There is subsequent fibrosis and calcification. Such damage
may be local and/or ectopic.

Urinary schistosomiasis (4)
Caused by S. haematobium. Initial toxic and allergic symptoms
are not marked, but the bladder and ureter are typically
involved with hyperaemia, terminal haematuria, dysuria and
frequency of micturition, papules, papillomata and ulceration.
Hypertrophy of the bladder can lead to later contraction. There
may be cystitis and calculus formation, with calcification and
squamous cell carcinoma. Fistulae may develop. There can
also be hydroureter and hydronephrosis. Ectopic lesions are
less severe than in other species. Genital schistosomiasis may
lead to lumpy semen, haematospermia or wart-like lesions
on the vulva.

Intestinal schistosomiasis (5)
Caused by S. mansoni. There are marked initial toxic and
allergic symptoms. The large intestine and rectum are typically
involved with polyposis, papules, abscesses, ulcers,
papillomata, fistulae and ova in faeces. The bladder is
sometimes involved, with pathology as for urinary
schistosomiasis as above. There can be ectopic lesions; the
liver is frequently involved (receiving eggs via the portal vein
with inflammatory reaction and fibrosis leading to periportal
(‘pipe-stem’) fibrosis with portal hypertension, oesophageal
varices, splenomegaly and ascites; there can also be lesions in
the brain, spinal cord and lungs.

Oriental schistosomiasis (6)
Caused by S. japonicum. Initial toxic and allergic symptoms
are marked and can lead to myocarditis and death. Intestinal
lesions are similar to those with S. mansoni infection, and the
small intestine is often involved. The liver is infected as in
S. mansoni. Hepatic involvement occurs as for S. mansoni. The
brain may also become involved.

Laboratory diagnosis
Eosinophilia may be present.
Ova found in terminal urine by Nuclepore filtration or after
centrifugation. Ova may also be found in semen. Ova may
also be found in faeces directly or using formalin-ether
concentration, rectal scrapings or biopsies.
Serology. ELISA tests (using soluble egg antigen) are useful
6–12 weeks post-exposure. In many chronic cases, the diagnosis
will be made by serology alone.
Clonorchis sinensis, syn. Opisthorchis sinensis (Oriental liver fluke)

Life cycle

1. Ingestion of Metacercaria in raw or under cooked fish
2. Duodenum
3. Encysted metacercariae
4. Immature adult
5. 11-20 x 3-4 mm
6. Animal reservoirs: dogs, cats, etc.

Pathology and Clinical features

Adult flukes inhabit the distal bile ducts with epithelial proliferation, surrounding inflammatory reaction and ascending cholangitis. Sometimes there is secondary bacterial infection with jaundice and septicaemia. There can also be eosinophilia. All this can lead to thick, dilated fibrous ducts with adenomata of epithelium, bile duct stenosis and cholangiocarcinoma. Many cases are asymptomatic. Acute infection may lead to tender hepatomegaly. Chronic infection can result in anorexia, low-grade fever, epigastric pain and tender hepatomegaly.

Laboratory diagnosis

Ova are found in faeces and in bile (via duodenal aspiration or 'string test').

Distribution

28 million infected worldwide.
Opisthorchis felineus, Opisthorchis viverrini (cat liver fluke)

Morphology

Adult
- Ovary lobed
- Testes lobed obliquely placed
- Lancet shaped 7-12 x 2-3 mm
- Oral sucker
- Ventral sucker
- Uterus coiled
- Vitellaria transverse in middle third
- Excretory bladder, long and sac-like

Ovum
- 30 x 11 μm
- Operculate embryonated

Cercaria
- Pigmented eye spots
- Tail keeled

Life cycle

Definitive host:
- Cat
- Dog
- Seal

Humans often infected by eating raw fish

Metacercariae excyst in duodenum
Migrate through common bile duct to the smaller intrahepatic ducts
Mature in 3-4 weeks

Pathology and Clinical features

There are proliferative changes in the bile ducts. If the infection is massive or repeated then there may be chronic cholangitis. Clinical features are similar to those of clonorchiasis.

Laboratory diagnosis

Ova can be found in faeces.

Distribution

O. felineus is found mainly in Eastern Europe and Russia.

O. viverrini occurs in Thailand.
Fasciola hepatica (sheep liver fluke)

Life cycle

Usual host sheep

- Ovum
 - Hatches 9–15 days
 - Miracidium
 - Invades intermediate host
 - Intramolluscan cycle: Sporocysts → Rediae → Cercariae

Human eats watercress with encysted metacercaria

Accidental host

Important snail hosts:
- *Lymnaea*
- *Succinea*

Metacercariae excyst in duodenum, pass through intestinal wall, peritoneal cavity, liver capsule, liver substance, to reach biliary passages to mature

Actual size of adult

- Conical projection
- Shoulders
- 30 x 13 mm

Pathology and Clinical features

Transit of immature worms through the liver can cause mechanical and toxic irritation with toxemia, necrosis and secondary fibrosis. Development in the bile ducts causes cystic enlargement, endothelial hyperplasia and adenoma, and secondary inflammatory infiltration causing fibrosis and cholangitis. There can be secondary bacterial infection causing abscesses. Eosinophilia is marked. Worms can appear ectopically in lungs, brain, eyes, etc. with similar reactions. If raw sheep or goat's liver, infected by the adult fluke, is eaten there can be local irritation and pharyngeal infection (Halzoun).

Acute infection may present with fever, tender hepatomegaly, epigastric pain, anorexia and vomiting. Jaundice may occur. In chronic infection, there may be no symptoms or epigastric/right upper quadrant pain, hepatomegaly and vomiting.

Laboratory diagnosis

Ova are found in faeces. Serology (IFAT) is available.

Distribution

The fluke is found in all sheep-rearing countries. About 1 million people are infected worldwide.
Fasciolopsis buses

Life cycle

There is localized inflammation at the site of attachment with haemorrhages and occasional abscesses. There is also eosinophilia. Lightly infected individuals may be asymptomatic. Diarrhoea, abdominal pain, anorexia, nausea and vomiting may occur.

Pathology and Clinical features

Ova, and sometimes adults, are found in faeces.

Distribution

15 million infected worldwide.
Heterophyes heterophyes

Morphology

- **Adult**
 - Oral sucker
 - Scales, especially anterior
 - Caeca
 - Ventral sucker
 - Genital sucker armed with spines
 - Uterus, coiled
 - Vitellaria in posterior third

- **Ovary round**
 - Very small: 1.0 - 1.7 x 0.3 - 0.4 mm

- **Testes round**

Life cycle

- **Definitive hosts:**

Pathology and Clinical features

There is a mild inflammatory reaction. Infected individuals may be asymptomatic or have abdominal pain, diarrhoea, anorexia and nausea. Ectopic ova have been found in the heart and brain.

Distribution and laboratory diagnosis

Metagonimus yokogawai

Morphology

- **Adult**
 - Oral sucker
 - Pharynx
 - Caeca
 - Ventral sucker
 - Uterus coiled
 - Conspicuous seminal receptacle

- **Ovary round**
 - Very small: one of smallest human flukes, 1.5 x 0.6 mm

- **Testes round**

Life cycle

- **Definitive hosts:**

Pathology and Clinical features

Causes mild inflammatory reaction in the intestine. Occasionally ectopic ova can cause granulomata in other organs of the body, especially the liver and brain.

Distribution

Prevalent in the Far East.
Paragonimus westermani (lung fluke)

Life cycle

- **Also other mammals, e.g. civet cat**
- **Excyst in small intestine, pass through intestinal wall, penetrate diaphragm and pleural cavity, come to rest in lung**
- **Ova voided in sputum or swallowed and voided in faeces**
- **Ova are found in sputum after KOH digestion or faeces after formalin-ether concentration. Serological tests, when available, are CF or ELISA (using extract of adult flukes as antigen) or gel diffusion. Chest X-ray or CT can also be used.**

Pathology and Clinical features

The initial invasion has little pathological effect on the host. On localization in the lungs, there is tissue reaction leading to formation of a fibrous tissue capsule (of a slate blue colour) containing worms (generally in pairs), ova and inflammatory infiltrate. The capsule is connected with the respiratory passages. Secondary complications of these lung cysts include bronchiectasis, abscess formation and haemoptysis. Localization in other sites can cause cysts in any part of the body (for example the brain, causing epilepsy). Eosinophilia is a general manifestation. Chronic infection may be asymptomatic. Cough, brown gelatinous sputum, chest discomfort, shortness of breath and pleuritic chest pain may occur.

Distribution

5 million infected worldwide.
Common helminth ova

- **Ascariis lumbricoides**
 - Fertile
 - Decorticated
 - Embryonated
 - Unfertilized

- **Trichuris trichiura**
 - Fresh
 - Developed

- **Enterobius vermicularis**

- **Taenia spp.**

- **Hymenolepis nana**

- **Hymenolepis diminuta**

- **Diphyllobothrium latum**

- **Schistosoma haematobium**

- **Schistosoma mansoni**

- **Schistosoma japonicum**

- **Clonorchis sinensis**

- **Paragonimus westermani**

- **Fasciola hepatica** and **Fasciolopsis buski**

Red blood cell

0 50 100 150 200 μm
(a) *Ascaris* ovum
(b) *Trichuris* ovum
(c) *Hymenolepis nana* ovum
(d) *Schistosoma mansoni* ovum
(e) *Toxocara canis* ova
(f) Hookworm (*Ancylostoma*) ovum
(g) *Schistosoma haematobium* ovum
(h) *Fasciola hepatica* ovum
Protozoology
An outline classification of the parasitic protozoa of humans

<table>
<thead>
<tr>
<th>Empire</th>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eukaryota</td>
<td>Archezoa Haeckel 1894</td>
<td>Metamonada</td>
<td>Trepomonadea</td>
<td>Diplomonadida</td>
<td>Giardia Enteromonas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retortamonadea</td>
<td>Retortamonadida</td>
<td>Chilomastix Retortamonas</td>
</tr>
<tr>
<td></td>
<td>Microspora</td>
<td>Microsporea</td>
<td>Microsporida</td>
<td></td>
<td>Encephalitozoon Enteroxotzoon Nosema Septata Trachipleistophora</td>
</tr>
<tr>
<td>Protozoa</td>
<td>Percolozoa Phyton 1818</td>
<td>Heterolobosea</td>
<td>Schizopyrena</td>
<td></td>
<td>Naegleris</td>
</tr>
<tr>
<td></td>
<td>Parabasala</td>
<td>Trichomonadea</td>
<td>Trichomonadida</td>
<td></td>
<td>Dientamoeba Trichomonas</td>
</tr>
<tr>
<td></td>
<td>Euglenozoa</td>
<td>Kinetoplastidea</td>
<td>Trypanosomatida</td>
<td></td>
<td>Leishmania Trypanosoma</td>
</tr>
<tr>
<td></td>
<td>Ciliophora</td>
<td>Litostomatea</td>
<td>Vestibiliferida</td>
<td></td>
<td>Balantidium</td>
</tr>
<tr>
<td></td>
<td>Apicomplexa (Sporozoa)</td>
<td>Coccidea</td>
<td>Eimerida</td>
<td></td>
<td>Cryptosporidium Cyclospora Isospora Sarcocystis Toxoplasma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Haematosporid</td>
<td>Plasmodium Babesia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piroplasmidia</td>
<td></td>
<td>Plasmodium Babesia</td>
</tr>
<tr>
<td></td>
<td>Rhizopoda</td>
<td>Lobosea</td>
<td>Acanthopodida</td>
<td></td>
<td>Acanthamoeba Balamuthia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entamoebidea</td>
<td>Euamoebida</td>
<td></td>
<td>Endolimax Entamoeba Iodamoeba</td>
</tr>
</tbody>
</table>
Intestinal protozoa

Coccidia

<table>
<thead>
<tr>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum</td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Order</td>
</tr>
<tr>
<td>Genus</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Isospora belli (causing coccidiosis in humans)

Life cycle

- Contaminated food and drink
- Small intestine and caecum
- Oocyst in faeces
- Penetrate cells of villi
- Schizont
- Transformed into trophozoites
- Further cells invaded
- Merozoite
- Cell ruptures
- Schizogony
 - Asexual cycle in mucosal cells
- Each secretes cyst wall to become sporocyst
- Nucleus and cytoplasm divide to form 4 sporozoites in each sporocyst
- Immature or mature oocyst found in faeces
- Sporogony
 - Sexual cycle in host cell or gut lumen
 - Nucleus divides into 2 sporoblasts
 - Sporozoites liberated
 - Oocyst
 - Sporozoites released from mature microgametocyte fertilizes mature macrogametocyte
 - Zygote secretes cyst wall
 - Contaminated food and drink

Pathology and Clinical features

Small bowel mucosal atrophy. Watery diarrhoea or steatorrhoea, weight loss and sometimes cholecystitis occur in AIDS.

Laboratory diagnosis

Oocysts are seen in formalin–ether concentration of faeces or modified Ziehl-Neelsen or auramine-stained faecal smears. Intraepithelial parasites may be seen in small bowel biopsies.
Cryptosporidium parvum

Life cycle

Pathology and Clinical features
In the immunocompetent, there is short-term enteropathy with self-limiting diarrhoea. In the immunocompromised, for example a patient with AIDS or a child with severe combined immunodeficiency, there is chronic diarrhoea with malabsorption and weight loss. Extraintestinal infection of the respiratory tract, biliary tract and pancreas may occur.

Laboratory diagnosis
Oocysts (4–5 μm in diameter) are found in faeces, using modified Ziehl-Neelsen stain, auramine or specific FITC labelled monoclonal antibody staining. They can also be found in faecal concentrates, duodenal aspirates and duodenal biopsies. The oocysts are very small (5 μm in diameter) and round. Parasites may also be seen in small bowel biopsies. Sucrose floatation is an alternative to formalin-ether concentration.

Distribution
Cryptosporidia have a cosmopolitan distribution. Human and farm animal strains exist; both can cause human disease. Human infection is usually waterborne.
Cyclospora cayetanensis

Life cycle

Oocysts are 8–10 μm in diameter with a central morula of refractile spheres when unsporulated. These mature into a final division of 2 sporocysts.

Pathology and Clinical features

Acute onset of diarrhoea, followed by steatorrhoea. Colicky abdominal pain and malaise. Partial villous atrophy may be seen.

Distribution

Widespread, probably worldwide.

Laboratory diagnosis

Oocysts are seen in faeces unsporulated when first passed. Diagnosis is either by formalin–ether concentration, modified Ziehl-Neelsen stain or by autofluorescence.
Coccidia (continued)

Sarcocystis hominis

Probable life cycle

Occasionally humans can act as intermediate hosts for Sarcocystis of other animals.

Morphology

Pathology and Clinical features
The intestinal stages produce diarrhoea and abdominal pain. The clinical significance of muscle cysts is unknown.

Laboratory diagnosis
Oocysts or free sporocysts are found in faeces. Histological examination of biopsy specimens may show the sexual stages in the intestinal epithelium. Histology is the only way to diagnose the presence of sarcocysts, although these are almost invariably incidental findings.
Microsporidia—general characteristics

All are obligate intracellular parasites. The vast majority of species are in invertebrates, especially insects, lower vertebrates and fish. Only a few have been reported from warm-blooded vertebrates.

They are considered to be primitive organisms. Their evolutionary history has been predicted from their prokaryote-like ribosomal characteristics — the absence of a separate 5.8S rRNA and the nucleotide sequence of the small subunit (16S) rRNA. They have no mitochondria. The infective stages are highly-resistant spores. These are very uniform in size for a given species.

When spores are ingested by a new host, the cells are penetrated by means of an apparatus known as the polar tube. When this is fully extended, the sporoplasm passes through the tube, to be inoculated into the cytoplasm of the host cell.

Following infection, there follows a phase of multiplication by binary or multiple fission (merogony). The transition to the spore-producing stage (sporogony) is heralded by the secretion of an electron dense surface coat — this will form the future exospore layer of the spore wall. The primary sporogonic cells are sporonts, which divide into sporoblasts, which mature into spores, which are released when the host cell ruptures.

Common species of microsporidia reported from humans. Most are AIDS associated.

<table>
<thead>
<tr>
<th>Species</th>
<th>Localization</th>
<th>Pathogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encaphalitozoon cuniculi</td>
<td>Generalized, brain, etc.</td>
<td>Convulsions, etc.</td>
</tr>
<tr>
<td>Encaphalitozoon hellem</td>
<td>Corneal epithelia</td>
<td>Keratopathy</td>
</tr>
<tr>
<td>Enterocytozoon bieneusi</td>
<td>Enterocytes—gut</td>
<td>Diarrhoea</td>
</tr>
<tr>
<td>Encaphalitozoon (Septata) intestinalis</td>
<td>Enterocytes—gut</td>
<td>Diarrhoea</td>
</tr>
<tr>
<td>Nosema conrori</td>
<td>Generalized</td>
<td>Multi-organ</td>
</tr>
<tr>
<td>Nosema corneum</td>
<td>Corneal stroma</td>
<td>Keratitis</td>
</tr>
<tr>
<td>Microsporidium africanaum</td>
<td>Corneal stroma</td>
<td>Keratitis</td>
</tr>
<tr>
<td>Pleistophora sp.</td>
<td>Muscle fibres</td>
<td>Myositis</td>
</tr>
</tbody>
</table>

Infections of the gastrointestinal tract and urinary system can be detected by the presence of spores in faeces or urine. Spores from these sites can be visualized by staining them with the modified trichrome stain.

The spores of microsporidia are very small—1 x 0.5 μm (See below)
Microsporidia (continued)

![Diagram of a microsporidian spore]

- Exospore
- Endospore
- Cytoplasmic membrane
- Nucleus
- Posterior vacuole
- Anchoring disc
- Polar tube

Life cycle

Infective stage
- Enterocyte
- Spore
- Polar filament
- Sporoplasm injected into host cell

Merogony
- Production of sporoblasts

Sporogony
- Production of spores
- Infective spores released into the gut lumen

Laboratory diagnosis

Alternative staining methods for microsporidal spores in stool samples are modified trichrome stain and uvitex 2B or calcofluor fluorescence.
Entamoeba
- Generally one nucleus in trophozoite
- Small karyosome at or near centre
- Nuclear membrane lined with chromatin granules
- Forms cysts

Endolimax
- Generally one nucleus in trophozoite
- Large irregular karyosome attached to nuclear membrane
- No peripheral chromatin
- Forms cysts

Iodamoeba
- Generally one nucleus in trophozoite
- Large karyosome surrounded by achromatic granules
- No peripheral chromatin
- Forms cysts

Dientamoeba
- Minute
- Generally binucleate
- Central particulate karyosome
- No peripheral chromatin
- No cystic stage

Species
Entamoeba histolytica/dispar
Entamoeba coli
Entamoeba hartmanni
Entamoeba polecki

Endolimax nana
Iodamoeba bütschlii
Dientamoeba fragilis
Entamoeba histolytica (causing amoebiasis)

Life cycle

Cysts from the environment

- **Cysts**
 - Dissemination
 - Discharge in necrotic debris
 - Invasion

- **Excystation** in small intestine
 - Metacyst liberated from cyst wall
 - Cytoplasm divides forming metacystic trophozoites

- **Invasion** of large intestine
 - Discharge in necrotic debris
 - Ulceration, occasionally amoeboma formation

- **Invasion** when dehydrated in bowel lumen
 - Discharges undigested food
 - Precyst
 - Condenses to spherical mass
 - Cyst
 - Secretes tough cyst wall
 - Food inclusions - glycogen - chromidial bars
 - Two consecutive mitoses – produce 4 nuclei
 - Glycogen and chromidial bars – less conspicuous – may disappear
 - Passed in semi-formed or formed stool

- To the environment in faeces

Important note

E. dispar has a similar life cycle but is regarded as non-invasive and not responsible for clinical disease

Outside the host

- **Trophozoite**
 - Die rapidly
 - Not infective by natural route

- **Precyst**
 - Not infective

- **Cyst**
 - Resistant
 - Infective

New host

- **Cysts in the environment**
 - Viability
 - Moist, cool conditions up to 12 days
 - In water 9-30 days
 - Via
 - Polluted water
 - Infected food handlers
 - Flies contaminating food
 - Night soil cultivation
 - Direct contact
Morphology

General - nomenclature

- **Trophozoite (Vegetative)**
 - Pseudopodia
 - Endoplasm with inclusions
 - Ectoplasm
 - Cytoplasm

- **Nucleus**
 - Membrane
 - Chromatin lining membrane
 - Fibril network
 - Karyosome

- **Precyst or unripe cyst**
 - Glycogen mass
 - Cyst wall
 - Nuclei
 - Chromidial bodies and bars

- **Ripe cyst**
 - Important note: *E. dispar* is morphologically identical to *E. histolytica* but the trophozoites are not haematophagous.

Particular - Includes differentiation from *Entamoeba coli*, an intestinal commensal.

<table>
<thead>
<tr>
<th>Unstained preparations</th>
<th>E. histolytica</th>
<th>Trophozoite</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular</td>
<td></td>
<td>Conspiciously granular</td>
<td></td>
</tr>
<tr>
<td>Clear finger-like</td>
<td></td>
<td>Blunt</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td>Sluggish</td>
<td>Not purposeful</td>
</tr>
<tr>
<td>Purposeful</td>
<td></td>
<td>Ring refractile granules with eccentric karyosome</td>
<td></td>
</tr>
<tr>
<td>Generally invisible</td>
<td></td>
<td>Vacuoles, crystals, vegetable cells, bacteria, no RBCs</td>
<td></td>
</tr>
<tr>
<td>Red blood cells (RBCs)</td>
<td>15-60 μm</td>
<td></td>
<td>15-50 μm</td>
</tr>
</tbody>
</table>

Precyst and unripe cyst

<table>
<thead>
<tr>
<th>Granular</th>
<th>Cytoplasm</th>
<th>Granular</th>
</tr>
</thead>
<tbody>
<tr>
<td>May be refractile ring</td>
<td>Nucleus</td>
<td>Visible as refractile ring</td>
</tr>
<tr>
<td>Rod-like refractile chromidial bars</td>
<td>Inclusions</td>
<td>May be slender refractile chromidial bars</td>
</tr>
<tr>
<td>Glycogen masses</td>
<td></td>
<td>Glycogen masses</td>
</tr>
</tbody>
</table>

Ripe cyst

<table>
<thead>
<tr>
<th>Round</th>
<th>Shape</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractile</td>
<td>Wall</td>
<td>Conspicuous refractile double outline</td>
</tr>
<tr>
<td>1–4 refractile nuclei with central karyosome</td>
<td>Nuclei</td>
<td>1–8 refractile nuclei with eccentric karyosomes</td>
</tr>
<tr>
<td>Refractile chromidial bars often present</td>
<td>Inclusions</td>
<td>Only rudimentary slender chromidial bars</td>
</tr>
</tbody>
</table>

10–33 μm
Invasion of the large intestine

The primary ulcer
- Invasion of mucosa via crypts
- Repair may:
 - overtake necrosis with healing
 - keep pace with necrosis causing persistent superficial lesions
- 'Flask-shaped'
 - Lag behind—extension

Extension in mucosa
- Muscularis mucosae relatively resistant
- Accumulation of amoebae superficial to it
- Lateral extension of lytic necrosis

Formation of sinuses
- Abscesses may coalesce under intact mucosa
- Later mucosa may slough with widespread ulceration

Deep extension
- Muscularis mucosae eventually pierced (directly or via vessels)
- Deep necrosis of sub-mucosa, even muscle and sub-serosa

Complications and sequelae

Perforation
Haemorrhage (rare)

Secondary infection

Amoeboma (rare)
(Clinically simulates neoplasm)
- intussusception
- obstruction

Invasion of blood vessels
Direct extension outside bowel

Peritonitis
Haemorrhage

Surrounding inflammatory reaction and fibroblastic proliferation

A mass under oedematous mucosa with
- internal abscesses of necrotic tissue and amoebae
- surrounding granulomatous tissue zone with eosinophils, lymphocytes and fibroblasts
- outer firm nodular fibrous tissue

Extraintestinal lesions—page 52

Intestinal protozoa 51
Entamoeba histolytica (causing amoebiasis) (continued)

Extraintestinal lesions in amoebiasis

- Invasion of large intestine
 - Direct extension

 - Cutaneous amoebiasis
 - Spreading ulcer
 - Irregular margins
 - Necrotic floor
 - Amoebae laterally

- Further haematogenous spread
 - Secondary invasion, especially in liver

- Further haematogenous spread
 - Formation of abscesses

Direct extension

- Skin of abdominal wall after rupture or surgery

- Peritoneal cavity and other abdominal organs

- Sub-diaphragmatic abscess

- Pleuro-pulmonary abscess

- Pericardium (Cardiac tamponade)

Haematogenous spread

- May rupture into bronchus (anchovy sauce sputum)

- Red brown fluid
 - Cellular debris with stromal trabeculae
 - Usually bacterially sterile

- Almost normal tissue invaded by amoebae

- Later some (slight) polymorph infiltration

Zone of stroma of organ

- Secondary to
 - Concomitant with
 - Independent of

- Liver involvement

- Ectopic sites
Laboratory diagnosis

Diagnosis depends primarily on demonstration of haematophagous trophozoites of *E. histolytica* in stool samples, aspirates from intestinal and other organs, biopsy material (pinch biopsy at proctoscopy or sigmoidoscopy and surgical biopsy from elsewhere) and in mucus from rectal ulcers. ELISAs are available for the detection of *Entamoeba* antigen and specific *E. histolytica* lectin antigen in faecal samples. Serology is the method of choice for diagnosis of amoebic liver disease.

Faecal appearances in amoebic dysentery

<table>
<thead>
<tr>
<th>Naked eye</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faecal matter</td>
<td>Always present</td>
</tr>
<tr>
<td>Mucus</td>
<td>Not tenacious</td>
</tr>
<tr>
<td></td>
<td>Not abundant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microscopic</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bacteria</td>
<td>Numerous</td>
</tr>
<tr>
<td>2. Pus cells</td>
<td>Scanty, well preserved</td>
</tr>
<tr>
<td>3. Red blood cells</td>
<td>Often in rouleaux</td>
</tr>
<tr>
<td>4. Large macrophages</td>
<td>Not a feature</td>
</tr>
<tr>
<td>5. Charcot-Leyden crystals</td>
<td>May be present but are non-specific</td>
</tr>
<tr>
<td>6. Haematophagous trophozoites of E. histolytica</td>
<td>Present</td>
</tr>
</tbody>
</table>

| Culture | Usually limited to reference or research laboratories; lectin ELISA is used for specific identification of *E. histolytica* from cyst or trophozoite. Enzyme electrophoresis from cultured trophozoite is an alternative. |

Haematophagous amoebic trophozoites.

(a) Direct microscopy
(b) Trichrome stain
(c) H&E stain

Notes
Vegetative *E. histolytica* when seen is actively motile and moves purposefully. There are finger-like, clear pseudopodia and ingested red cells. No nucleus can be seen. Precysts or cysts found in semi-formed or solid stool have typical nuclear characteristics (1–4 nuclei) and glycogen and chromidial bars can be demonstrated.

Diagnostic tests
Polymorph leucocytosis. Examination of stool samples may show cysts and trophozoites of *E. histolytica*. Serological tests (IFAT, ELISA, cellulose acetate precipitin, latex agglutination) but serology is positive in no more than 75% of cases of amoebic colitis. Examine aspirated material for *E. histolytica*. Histology of rectal and colon biopsy material.
Other intestinal amoebae

Life cycle

- **Cysts** (vegetative forms of *D. fragilis* from environment)
- **Excystation** in small intestine
- Multiplication of vegetative forms in large intestine
- **Excystation** (except in *D. fragilis*) if dehydrated
- Cysts (vegetative forms of *D. fragilis*) to environment in formed stools. Vegetative forms found in diarrhoea

Morphology

Unstained

<table>
<thead>
<tr>
<th>Vegetative forms (trophozoites)</th>
<th>Entamoeba coli</th>
<th>Endolimax nana</th>
<th>Iodamoeba butschili</th>
<th>Dientamoeba fragilis</th>
<th>Entamoeba histolytica</th>
<th>Entamoeba dispar</th>
<th>Entamoeba hartmanni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>15–50 μm</td>
<td>8–10 μm</td>
<td>8–20 μm</td>
<td>5–12 μm</td>
<td>15–60 μm</td>
<td>15–60 μm</td>
<td>15–60 μm</td>
</tr>
<tr>
<td>Motility</td>
<td>Sluggish</td>
<td>Sluggish</td>
<td>Fairly active</td>
<td>Very active</td>
<td>Very active</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>Ectoplasm</td>
<td>Little</td>
<td>Little</td>
<td>Little</td>
<td>Abundant</td>
<td>Abundant</td>
<td>Abundant</td>
<td>Abundant</td>
</tr>
<tr>
<td>Pseudopodia</td>
<td>Blunt, mainly granular</td>
<td>Blunt, mainly granular</td>
<td>Blunt, clear</td>
<td>Leaf-like, clear</td>
<td>Finger-like, clear</td>
<td>Finger-like, clear</td>
<td>Finger-like, clear</td>
</tr>
<tr>
<td>Endoplasm</td>
<td>All have granular cytoplasm with food particles, bacteria, crystals, vegetable cells, often in vacuoles. No ingested RBCs</td>
<td></td>
<td></td>
<td>ingested RBCs</td>
<td>No ingested RBCs</td>
<td>No ingested RBCs</td>
<td></td>
</tr>
<tr>
<td>Nucleus</td>
<td>Ring of refractive dots</td>
<td>Generally invisible</td>
<td>Generally invisible</td>
<td>Two, collection of dots</td>
<td>Generally invisible</td>
<td>Generally invisible</td>
<td>Generally invisible</td>
</tr>
<tr>
<td>Precyst</td>
<td>(round up, discharge food particles, bacteria, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycogen</td>
<td>Often prominent vacuole</td>
<td>Rare</td>
<td>Conspicuous</td>
<td>None</td>
<td>Diffuse, soon disappears</td>
<td>Diffuse, soon disappears</td>
<td>Diffuse, soon disappears</td>
</tr>
<tr>
<td>Chromidial bars</td>
<td>Rarely seen</td>
<td>Rare</td>
<td>None</td>
<td>None</td>
<td>Large refractile bars</td>
<td>Large refractile bars</td>
<td>Large refractile bars</td>
</tr>
<tr>
<td>Cysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>10–33 μm</td>
<td>5–14 μm</td>
<td>5–18 μm</td>
<td>None</td>
<td>10–20 μm</td>
<td>10–20 μm</td>
<td>8–10 μm</td>
</tr>
<tr>
<td>Shape</td>
<td>Spherical or oval</td>
<td>Oval</td>
<td>Irregular</td>
<td>None</td>
<td>Spherical</td>
<td>Spherical</td>
<td>Spherical</td>
</tr>
<tr>
<td>Wall</td>
<td>Thick</td>
<td>Thin</td>
<td>Thin</td>
<td>None</td>
<td>Thin</td>
<td>Thin</td>
<td>Thin</td>
</tr>
<tr>
<td>Glycogen</td>
<td>Diffuse central</td>
<td>None</td>
<td>Well-defined vacuoles</td>
<td>None</td>
<td>Sometimes persists</td>
<td>Sometimes persists</td>
<td>Sometimes persists</td>
</tr>
<tr>
<td>Chromidial bars</td>
<td>Not usual</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Sometimes present</td>
<td>Sometimes present</td>
<td>Sometimes present</td>
</tr>
<tr>
<td>Nuclei numbers</td>
<td>1–8</td>
<td>4 (at one end)</td>
<td>1 only</td>
<td>None</td>
<td>1–4</td>
<td>1–4</td>
<td>1–4</td>
</tr>
</tbody>
</table>
Stained

<table>
<thead>
<tr>
<th>Cyttoplasm inclusions</th>
<th>Entamoeba coli</th>
<th>Endolimax nana</th>
<th>Iodamoeba bütschlii</th>
<th>Dientamoeba fragilis</th>
<th>Entamoeba histolytica</th>
<th>Entamoeba dispar</th>
<th>Entamoeba hartmannii</th>
</tr>
</thead>
<tbody>
<tr>
<td>With haematoxylin, stains bluish-grey</td>
<td>Stain black except glycogen as clear area</td>
<td>RBCs also stain black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclear characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>Thick</td>
<td>Thin</td>
<td>Thick</td>
<td>Very delicate</td>
<td>Delicate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromatin on membrane</td>
<td>Coarse</td>
<td>None</td>
<td>Sometimes granular</td>
<td>None</td>
<td>Fine granules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karyosome</td>
<td>Coarse, generally eccentric</td>
<td>Large irregular</td>
<td>Large lateral</td>
<td>Central granules</td>
<td>Small central</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibril network</td>
<td>May be chromatin particles</td>
<td>No chromatin</td>
<td>No chromatin</td>
<td>Delicate fibrils</td>
<td>Not often seen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathogenicity</td>
<td>Harmless commensal</td>
<td>Harmless commensal</td>
<td>Harmless commensal</td>
<td>Disputed</td>
<td>Invasive</td>
<td>Harmless commensal</td>
<td>Non-invasive</td>
</tr>
</tbody>
</table>

Entamoeba coli cysts

Iodamoeba bütschlii cysts

Entamoeba histolytica/dispar cysts
Intestinal flagellates

Diagnosis
Trophozoites or cysts are found in stool samples or duodenal aspirates. Duodenal string test and stool antigen detection ELISA are also possible for the detection of *Giardia*.

Distribution
These protozoa have a worldwide distribution.

Giardia intestinalis (G. lamblia)

Life cycle

- Cysts from environment
- Encystation
- Multiplication
- Binary fission
- Excyostation
- Trophozoite
 - Sucking disc
 - Blepharoplasts
 - 2 nuclei
 - (Thin nuclear membrane with no granules, central karyosome)
 - 2 axonemes
 - Parabasal body
 - 4 pairs of flagella
- Encystation
- Cysts to environment

Pathogenicity
Common inhabitant of upper part of small intestine
- Enteropathy, diarrhoea, steatorrhoea

Chilomastix mesnili

Life cycle

- Cysts from environment
- Encystation
- Multiplication by binary fission
- Excyostation
- Trophozoite
 - 6 flagellae
 - 3 free anteriorly
 - 1 in mouth
 - 2 surrounding mouth
 - Blepharoplast
 - Single nucleus
 - well-defined thin nuclear membrane
 - minute central or eccentric karyosome
 - Cytostome
 - Spiral groove
- Cyst
 - Thick unstained cell wall
 - Cytostome and remains of locomotor apparatus
 - Single nucleus
 - well-developed membrane
 - central or lateral karyosome

Pathogenicity
Commensal—apparently harmless
Trichomonas species

![Trichomonas trophozoite](image)

T. hominis
This is illustrated above. The trophozoite inhabits the small and large intestine. There is no proof as yet that it has any pathogenicity.

T. vaginalis
Morphologically this is the same as *T. hominis* (above) but there is no free posterior flagellum beyond the undulating membrane. There is a marked parabasal body. It inhabits the urethra in the male and the vagina in the female, and is a cause of urethritis and vaginitis.

Demonstration of *T. vaginalis* is made by direct microscopy or after staining with acridine orange fluorescence stain. Cultures can be made using Feinberg–Whittington or Diamond’s medium.
Intestinal ciliates

Balantidium coli

Found in South and Central America, parts of Asia and some Pacific islands.

In its vegetative state, recognizable by the oval shape, coarse cilia, contractile vacuoles and the horseshoe- or kidney-shaped macronucleus. Reproduction is by binary fission.

Life cycle

Pathology and Clinical features

Problems occur in the ileum, colon and rectum but there is no extraintestinal spread. The parasite is a cause of dysentery, although the ulcers are wider mouthed than those of amoebic dysentery. Secondary infection is frequent. The main complication is perforation.

Laboratory diagnosis

Trophozoites are found in diarrhoea and, in a fresh specimen, can be seen in active rotational movement. Cysts are found in semi-formed and formed stools.
Tissue protozoa

Toxoplasma gondii

Toxoplasma has a very wide mammalian host range.

Morphology

Tachyzoite
- Pointed end
- Red nucleus-ovoid, crescentic, or pyriform-nearer one end
- Blue cytoplasm
- Paranucleus stains as a small red dot
- Central karyosome
- Nuclear membrane
- Habitat:
 - Tachyzoites: single (free or intracellular) or in masses (pseudocysts)
 - In nucleated cells, especially macrophages
 - Bradyzoites (similar to tachyzoites but less active metabolically) in tissue cysts
- Morphology: 4–6 x 2–3 μm

Life cycle

- Cysts ingested by cat
- Cat is definitive host:
 - Unsporulated oocysts passed in faeces
- Ingested cysts in infective meat (raw or undercooked)
- Cysts containing bradyzoites in tissues of intermediate host
- Intermediate hosts
 - Tachyzoites transmitted through placenta
 - Contaminated food and water
 - Infected fetus
- Oocysts in feed, water, or soil ingested by intermediate host
- Sporulated oocysts
- Contaminated food and water
Toxoplasma gondii (continued)

Pathology and Clinical features

Congenital infection
- Marked calcification
- Hydrocephalus or microcephaly
- Micro
 - Minute necrotic areas
 - Minute granulomata
 - Parasites in cells
 - Calcification

Myocarditis

Chorioretinitis

Other routes of infection
- Inapparent effect
 - Woman may have affected child though herself shows no signs of disease
- Acute encephalitis
 - Cerebral abscess
 - Frequently seen in patients with HIV infection

'Glandular-fever-like' syndrome
- Acute fever
- Atypical pneumonia
- Congested
- Serous effusions
- Micro
 - Atypical pneumonia
 - Parasitized mononuclears in bronchi

Chorioretinitis

Lymphadenopathy
- Enlarged
- Reactive hyperplasia
- Conspicuous collections of histiocytes

Laboratory diagnosis
Diagnosis is usually made serologically by demonstration of specific antibodies. Methods include Latex agglutination, ELISA and ISACA. The 'gold standard' for *Toxoplasma* serological diagnosis is the Sabin-Feldman dye test.

Lymph node biopsy should not be required to diagnose *Toxoplasma* but if performed because another diagnosis was suspected, the findings are as stated above.

![Toxoplasma tachyzoites](image1)

![Toxoplasma pseudocyst (brain)](image2)
Malaria parasites

Classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Haematozoea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>Haemosporida</td>
</tr>
<tr>
<td>Family</td>
<td>Plasmodiidae</td>
</tr>
<tr>
<td>Genus</td>
<td>Plasmodium</td>
</tr>
<tr>
<td>Class</td>
<td>P. vivax</td>
</tr>
<tr>
<td></td>
<td>P. malariae</td>
</tr>
<tr>
<td></td>
<td>P. falciparum</td>
</tr>
<tr>
<td></td>
<td>P. ovale</td>
</tr>
</tbody>
</table>

- **Class**: Haematozoea
- **Order**: Haemosporida
 - Sexual and asexual generations in different hosts
 - Parasitic in fixed tissue cells and RBCs of vertebrate host
- **Family**: Plasmodiidae
 - Include human malaria parasites
 - Produce pigment in asexual cycle in RBCs of vertebrates
 - Produce gametocytes in RBCs of vertebrates
 - Sporogony (sexual cycle) in invertebrates
- **Genus**: Plasmodium
 - Schizogony (asexual cycle) in:
 - RBCs
 - Other tissue cells of vertebrate host
 - Pigment derived from haemoglobin of infected RBC
 - Gametocytes develop in some RBCs. These undergo sporogony (sexual cycle) in female anopheline mosquitoes
 - Sporozoites produced in mosquito, infective to vertebrate host
 - All malaria parasites included in this genus

- **Class**: P. vivax
 - Causes benign tertian malaria

- **Class**: P. malariae
 - Causes quartan malaria

- **Class**: P. falciparum
 - Causes malignant tertian malaria

- **Class**: P. ovale
 - Causes ovale malaria
Life cycle

Elongation and development of motility by zygote-okinete (traveling vermicule)

Fertilization of female (zygote formed)

Elongation of microgametocyte
Maturation of microgametocyte by reduction division

Penetration of stomach wall by ookinete

Development of oocysts and sporozoites

Rupture of oocyst liberating sporozoites into body cavity

Localization of many sporozoites in salivary glands

Infective mosquito

Sporozoites

Primary pre-erythrocytic cycle in liver cells

Hypnozoite

Dormant for months, reactivates to produce a pre-erythrocytic cycle
In P. vivax and P. ovale only

Sporogony Schizogony

Gametocytes

Trophozoite

Erythrocytic cycle

Development of schizont

Merozoites

Infective mosquito
Morphology

Stained by Leishman or Giemsa

Schizogony (asexual cycle)

Pre-erythrocytic cycle in liver cells

- Schizonts in liver cells
- No pigment at this stage

Erythrocytic stage in RBCs

- Cytoplasm blue
- Chromatin red
- Pigment (from haemoglobin) varies in colour and time of appearance

The parasite

The red cell

May vary in:
- Size
- Shape

General features

Pink spots in cytoplasm unoccupied by parasite

May contain :
- Schüffner's or James' dots
- Maurer's clefts

Brick red clefts in cytoplasm

<table>
<thead>
<tr>
<th>RBC characteristics</th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. falciparum</th>
<th>P. ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Larger than mature RBC</td>
<td>Smaller, older RBC</td>
<td>Mature RBC</td>
<td>Larger than mature RBC</td>
</tr>
<tr>
<td>Colour</td>
<td>Pale</td>
<td>Normal</td>
<td>Normal</td>
<td>Pale</td>
</tr>
<tr>
<td>Shape</td>
<td>Round</td>
<td>Round</td>
<td>Round</td>
<td>Oval</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May be crenated</td>
<td>May be fimbriated</td>
</tr>
<tr>
<td>Cytoplasmic inclusions</td>
<td>Schüffner's dots present</td>
<td>None</td>
<td>Maurer's clefts may be</td>
<td>James' dots conspicuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>present in late trophozoites</td>
<td></td>
</tr>
</tbody>
</table>

Malaria parasites 63
Morphology (continued)

Stages in thin films

Ring forms (early trophozoites)

<table>
<thead>
<tr>
<th></th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. falciparum</th>
<th>P. ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1/3 RBC</td>
<td>Up to 1/3 RBC</td>
<td>1/3 RBC</td>
<td>1/3 RBC</td>
</tr>
<tr>
<td>Shape</td>
<td>Delicate ring</td>
<td>Compact ring</td>
<td>Very delicate ring</td>
<td>Dense ring</td>
</tr>
<tr>
<td>Chromatin</td>
<td>Fine dot</td>
<td>One mass often inside ring</td>
<td>Fine dots Frequently two</td>
<td>Dense, well-defined mass</td>
</tr>
<tr>
<td>Accoé forms*</td>
<td>Sometimes</td>
<td>None</td>
<td>Frequent</td>
<td>None</td>
</tr>
<tr>
<td>Pigment</td>
<td>None at this stage</td>
<td>May be present</td>
<td>None at this stage</td>
<td>None at this stage</td>
</tr>
<tr>
<td>Multiple parasitized cells</td>
<td>Sometimes</td>
<td>Rare</td>
<td>Frequently with high parasitaemia</td>
<td>Rare</td>
</tr>
</tbody>
</table>

* Forms situated on margin of RBC

Developing trophozoites

<table>
<thead>
<tr>
<th></th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. falciparum</th>
<th>P. ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Large</td>
<td>Small, but appears large relative to size of RBC</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>Shape</td>
<td>Very irregular, amoeboid</td>
<td>Compact, often band forms</td>
<td>Compact, with cytoplasmic vacuolation</td>
<td>Compact</td>
</tr>
<tr>
<td>Chromatin</td>
<td>Dots or threads</td>
<td>Prominent, often as a band</td>
<td>Dots or threads</td>
<td>Large irregular clumps</td>
</tr>
<tr>
<td>Pigment</td>
<td></td>
<td>Coarse</td>
<td>Coarse</td>
<td>Coarse</td>
</tr>
<tr>
<td>— texture</td>
<td>Fine</td>
<td>Coarse</td>
<td>Coarse</td>
<td>Coarse</td>
</tr>
<tr>
<td>— colour</td>
<td>Yellow brown</td>
<td>Dark brown</td>
<td>Black</td>
<td>Dark yellow brown</td>
</tr>
<tr>
<td>— quantity</td>
<td>Medium</td>
<td>Abundant</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>— distribution</td>
<td>Scattered fine particles</td>
<td>Scattered clumps and rods</td>
<td>Aggregated in one or two clumps</td>
<td>Scattered coarse particles</td>
</tr>
</tbody>
</table>

64 Protozoology
Immature schizonts

<table>
<thead>
<tr>
<th></th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. falciparum</th>
<th>P. ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Almost fills RBC</td>
<td>Almost fills RBC</td>
<td>Almost fills RBC</td>
<td>Almost fills RBC</td>
</tr>
<tr>
<td>Shape</td>
<td>Somewhat amoeboid</td>
<td>Compact</td>
<td>Compact</td>
<td>Compact</td>
</tr>
<tr>
<td>Chromatin</td>
<td>Numerous irregular masses</td>
<td>Few irregular masses</td>
<td>Irregular masses</td>
<td>Few irregular masses</td>
</tr>
<tr>
<td>Pigment</td>
<td>Scattered</td>
<td>Scattered</td>
<td>Single clump</td>
<td>Scattered</td>
</tr>
</tbody>
</table>

(rarely seen in peripheral blood)

Mature schizonts

<table>
<thead>
<tr>
<th></th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. falciparum</th>
<th>P. ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Fills RBC</td>
<td>Nearly fills RBC</td>
<td>Nearly fills RBC</td>
<td>Fills 3/4 RBC</td>
</tr>
<tr>
<td>Shape</td>
<td>Segmented</td>
<td>Segmented daisy head</td>
<td>Segmented</td>
<td>Segmented</td>
</tr>
<tr>
<td>Merozoites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— range</td>
<td>14–24</td>
<td>6–12</td>
<td>8–32</td>
<td>6–12</td>
</tr>
<tr>
<td>— mean</td>
<td>16</td>
<td>8</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>— size</td>
<td>Medium</td>
<td>Large</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Pigment</td>
<td>Aggregated in centre (yellow brown)</td>
<td>Aggregated in centre (dark brown)</td>
<td>Aggregated in centre (black)</td>
<td>Aggregated in centre (dark yellow brown)</td>
</tr>
</tbody>
</table>

(rarely seen in peripheral blood)
Morphology (continued)

Stages in thin films (continued)

Microgametocytes (male)

<table>
<thead>
<tr>
<th></th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. falciparum</th>
<th>P. ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of appearance</td>
<td>3–5 days</td>
<td>7–14 days</td>
<td>7–12 days</td>
<td>12–14 days</td>
</tr>
<tr>
<td>Number in bloodstream</td>
<td>Many</td>
<td>Scanty</td>
<td>Many</td>
<td>Scanty</td>
</tr>
<tr>
<td>Size</td>
<td>3/4 fills RBC</td>
<td>1/2 to 2/3 fills RBC</td>
<td>Larger than RBC</td>
<td>1/2 to 2/3 fills RBC</td>
</tr>
<tr>
<td>Shape</td>
<td>Round or oval compact</td>
<td>Round compact</td>
<td>Kidney-shaped Bluntly round ends</td>
<td>Round compact</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>Pale blue</td>
<td>Pale blue</td>
<td>Reddish blue</td>
<td>Pale blue</td>
</tr>
<tr>
<td>Chromatin</td>
<td>Single chromatin mass</td>
<td>As for P. vivax</td>
<td>Fine granules scattered throughout</td>
<td>As for P. vivax</td>
</tr>
<tr>
<td>Pigment</td>
<td>Abundant brown granules throughout</td>
<td>As for P. vivax</td>
<td>Dark granules throughout</td>
<td>As for P. vivax</td>
</tr>
</tbody>
</table>

Macrogametocytes (female)

<table>
<thead>
<tr>
<th></th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. falciparum</th>
<th>P. ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of appearance</td>
<td>3–5 days</td>
<td>7–14 days</td>
<td>7–12 days</td>
<td>12–14 days</td>
</tr>
<tr>
<td>Number in bloodstream</td>
<td>Many</td>
<td>Scanty</td>
<td>Many</td>
<td>Scanty</td>
</tr>
<tr>
<td>Size</td>
<td>3/4 fills RBC</td>
<td>1/2 to 2/3 fills RBC</td>
<td>Larger than RBC</td>
<td>1/2 to 2/3 fills RBC</td>
</tr>
<tr>
<td>Shape</td>
<td>Round or oval compact</td>
<td>Round compact</td>
<td>Crescentic-sharply rounded or pointed ends</td>
<td>Round compact</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>Dark blue</td>
<td>Dark blue</td>
<td>Dark blue</td>
<td>Dark blue</td>
</tr>
<tr>
<td>Chromatin</td>
<td>Compact peripheral mass</td>
<td>As for P. vivax</td>
<td>Compact masses near centre</td>
<td>As for P. vivax</td>
</tr>
<tr>
<td>Pigment</td>
<td>Small masses round periphery</td>
<td>As for P. vivax</td>
<td>Black, rod-like granules round nucleus</td>
<td>As for P. vivax</td>
</tr>
</tbody>
</table>
Morphology in stained thick films

Note that the parasites are not flattened in the film and so appear smaller than in thin film. The red cells are haemolyzed in processing so there is no guide to the size, shape or colour of the RBCs. Schüffner's dots are indefinite and there are no Maurer's clefts.

P. vivax

1. Ring forms, small fine rings often broken
2. Trophozoites, markedly irregular cytoplasm
3. Schizonts, many (average 16) small merozoites
4. Gametocytes, compact parasites with features of δ and φ as described
5. White blood cell

P. malariae and P. ovale

Almost identical but James' dots may be visible in the latter

1. Ring forms, compact rings
2. Trophozoites, solid regular cytoplasm
3. Schizonts, few (average 8) large merozoites
4. Gametocytes, very difficult to distinguish from *P. vivax*
5. White blood cell

P. falciparum

1. Ring forms, very small, fine rings usually unbroken trophozoites (with vacuolated cytoplasm) and schizonts are rarely seen in peripheral blood
2. Gametocytes, characteristic crescentic δ and φ forms
3. White blood cell

Malaria parasites 67
Pathology and Clinical features

Plasmodium vivax, *P. ovale*, *P. malariae* and uncomplicated *P. falciparum* malaria have similar features with fever, rigors, headache, muscle aches, malaise and anorexia. Anaemia may develop and the liver and spleen may become enlarged. Because the clinical appearances are non-specific, malaria may be misdiagnosed, e.g. as a viral infection, with severe consequences.

Plasmodium falciparum infection can readily progress to severe malaria, the clinical criteria of which have been defined by a World Health Organisation working group. One or more of the following features in the presence of asexual parasitaemia indicate severe falciparum malaria: • cerebral malaria • severe anaemia • renal failure • pulmonary oedema or adult respiratory distress syndrome • hypoglycaemia • circulatory collapse or shock • spontaneous bleeding from the gums, nose, gastrointestinal tract and/or laboratory evidence of disseminated intravascular coagulation • repeated generalised convulsions (more than two in 24 hours despite cooling) • acidaemia (arterial pH < 7.25) or acidosis (plasma bicarbonate < 15 mmol/L) • macroscopic haemoglobinuria.

Other features of severe falciparum malaria include impaired consciousness less severe than coma, prostration, hyperparasitaemia, jaundice and hyperpyrexia.

Laboratory diagnosis

Malaria parasites in thin blood film. Stained by Leishman or Giemsa at pH 7.2

P. vivax
P. malariae
P. falciparum
P. ovale

It is also possible to use thick blood films stained by Field or Giemsa. Bone marrow films may also be examined. Serology (IFAT or ELISA) is not appropriate for the detection of acute malaria but is deployed as a retrospective test for epidemiological use to establish the cause of nephrotic syndrome or hyperreactive malarial splenomegaly (HMS).

Antigen Detection

P. falciparum expresses a specific antigen HRP2 on the surface of the parasitized RBC. This can be detected by using immunochromatographic antigen capture techniques (AMRAD ICT, Becton Dickinson ParaSight F). Parasite lactate dehydrogenase (pLDH) is biochemically and antigenically distinct from human LDH and is produced by all Plasmodium species. Gold-labelled monoclonal and polyclonal antibodies can be used in an immunochromatographic technique to detect pLDH in whole blood (OptiMAL, Flow Inc., Portland OR).
Body-fluid and tissue flagellates

Classification

Phylum: Euglenozoa
Class: Kinetoplastidae

Live in bloodstream and tissues
Vector (blood-sucking invertebrates) required

Trypanosomatidae
Single flagellum

Morphological stages of the Trypanosomatidae affecting humans

Leishmania spp.

Amastigote (L-D body) → Intracellular in macrophages in humans
Leishmania amastigotes

Promastigote → In midgut, then proboscis of sandfly (transfer stage to human, also in culture)

Trypanosoma spp.

Trypanosoma brucei rhodesiense
Trypanosoma brucei gambiense

Epimastigote → In salivary glands and proboscis of tsetse fly (transfer stage to human)
Trypomastigote

Trypomastigote → In bloodstream, lymph nodes and later CNS of humans

Trypanosoma cruzi

Amastigote → Intracellular in macrophages and tissue cells of humans
Trypomastigote → In midgut, then faeces of bug (transfer stage to humans)
In blood and tissue spaces of humans
Leishmaniasis

<table>
<thead>
<tr>
<th>Species</th>
<th>Disease</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. donovani complex</td>
<td>Visceral (kala azar)</td>
<td>[Map showing distribution of visceral leishmaniasis]</td>
</tr>
<tr>
<td>L. infantum</td>
<td>Cutaneous</td>
<td></td>
</tr>
<tr>
<td>L. tropica</td>
<td>Muco-cutaneous (Espundia)</td>
<td></td>
</tr>
<tr>
<td>L. braziliensis complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. amazonensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. mexicana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. infantum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life cycle and morphology of *Leishmania* (similar in all three species)

- **Promastigote form in insect (and culture)**: 14–20 μm
 - Nucleus
 - Axoneme
 - Kinetoplast

- **Amastigote in macrophages of humans**: 3–4 x 2 μm
 - Vacuole
 - Remains of axoneme
 - Nucleus
 - Kinetoplast (DNA)

Life cycle in insect

- **Species of sandflies**
 - Phlebotomus (Old World)
 - Lutzomyia (New World)

- **Blockage of proboscis by promastigotes**

- **Amastigotes in blood or tissue juices**

- **Forward migration to pharynx**

- **Reproduction by binary fission**

Life cycle in humans and reservoir animals

- **Blocked sandfly attempts to obtain blood meal**
 - Injects promastigotes

- **Ingested by macrophages**
 - Metamorphose into amastigotes

- **Reproduction by binary fission**

- **Rupture of parasitized cell**

- **Core of parasitized cells formed**

- **Infection of further cells**

- **Reproduction by binary fission**

- **Lodge in RE cells of various organs**
 - Released into bloodstream in systemic forms

- **Remains localized to skin in cutaneous forms**

- **Localized to skin, plus metastases to mucosae in mucocutaneous forms**

Body-fluid and tissue flagellates 71
Visceral leishmaniasis (kala azar)

Distribution

![Map of Visceral leishmaniasis distribution](image)

Clinico-pathological correlation

Spleen
- Parasitized macrophages and endothelial cells
- Splenomegaly, pain from perisplenitis
- Spleen appears congested, dark red, soft and friable. Markedly enlarged
- The capsule is thickened and, later, infarcts and fibrosis occur

Liver
- Hepatomegaly
- Liver appears enlarged, fatty congested and later may become cirrhotic
- Parasitized proliferated Kupffer cells with atrophy of the liver cells and later fibrosis

Lymph nodes
- Lymphadenopathy
- Reactive hyperplasia with parasitized macrophages

Mechanism of pathology

Defence
- Multiplication and mobilization of RE cells with stimulation of immune response. Enlargement of liver, spleen and lymph nodes
- Later inconstant fibrosis-cirrhosis-haemorrhage, jaundice, ascites, rashes
- Localization in the skin after treatment
- Migration of parasites to skin post-kala azar dermal leishmaniasis (PKDL)

Offence
- Skin and nasal mucosa involvement can occur (especially in Sudan) leading to ulceration
- Parasitization and breakdown of RE cells. Release of parasites and debris with further parasitization
- Secondary effects
 - Displacement, degeneration of parenchymatous tissue
 - Toxaemia, cachexia fever, weight loss, weakness
 - Pallor, cardiac dilation, tachycardia, low blood pressure, haemic murmurs, ankle oedema
 - Replacement of bone marrow
 - Anaemia, leucopenia, thrombocytopenia
 - Degenerative myocarditis
 - Stomatitis, cancrum oris, cough, diarrhoea
 - Purpura, epistaxis, melaena
 - Pigmentation: darkening of skin at forehead, temples, mouth (Kala azar means 'black fever')

Both offensive and defensive processes give rise to increased serum globulin and reversal of a/g ratio.
Visceral leishmaniasis (kala azar)

Distribution

![World map showing distribution of visceral leishmaniasis](image)

Clinico-pathological correlation

- **Spleen**
 - Parasitized macrophages and endothelial cells
 - Splenomegaly, pain from perisplenitis
 - Spleen appears congested, dark red, soft and friable. Markedly enlarged
 - The capsule is thickened and, later, infarcts and fibrosis occur

- **Liver**
 - Hepatomegaly
 - Liver appears enlarged, fatty congested and later may become cirrhotic
 - Parasitized proliferated Kupffer cells with atrophy of the liver cells and later fibrosis

- **Lymph nodes**
 - Lymphadenopathy
 - Reactive hyperplasia with parasitized macrophages

Mechanism of pathology

- Offence
 - Skin and nasal mucosa involvement can occur (especially in Sudan) leading to ulceration

- Parasitization and breakdown of RE cells. Release of parasites and debris with further parasitization

- Secondary effects
 - Displacement, degeneration of parenchymatous tissue
 - Toxaemia, cachexia fever, weight loss, weakness
 - Pallor, cardiac dilation, tachycardia, low blood pressure, haemorrhagic petechiae, ankle oedema

- Defence
 - Multiplication and mobilization of RE cells with stimulation of immune response. Enlargement of liver, spleen and lymph nodes

- Later inconstant fibrosis-cirrhosis-haemorrhage, jaundice, ascites, rashes

- Localization in the skin after treatment
 - Migration of parasites to skin post-kala azar dermal leishmaniasis (PKDL)

Both offensive and defensive processes give rise to increased serum globulin and reversal of a/g ratio.
Cutaneous leishmaniasis

Caused by *Leishmania tropica*, *L. major*, *L. aethiopica*, *L. infantum*, *L. braziliensis* complex

Blocked sandfly injects promastigotes
Core of cells parasitized by amastigotes formed
Acanthosis cellular infiltration
Necrosis and ulceration
Secondary infection
Granulation
Healing (2–12 months) with depressed pigmented scar

Ulex with sharp cut edges and surrounding induration

Remains localized to skin

Mucocutaneous leishmaniasis (espundia)

Caused by some infections with *L. braziliensis* (Central and South America), *L. aethiopica* (Ethiopia), *L. mexicana*

Blocked sandfly injects promastigotes
Cutaneous manifestations like oriental sore but often weeping ulcers
Spread to mucosae of mouth, nose, larynx, pharynx, ear

Parasitized cells
Inflammatory infiltration
Necrosis
Later reactive fibrosis

Secondary effects in loose mucosal tissues
- Oedema and capillary involvement
- Interference with local blood supply
- Necrosis - extensive destruction
- Secondary infection
 - Deep erosion locally
 - Spread of infection to lungs or elsewhere
- Healing with fibrosis
 - General constitutional upset
 - (fever, pain, anaemia)

Secondary infection
 - Extensive disfiguring lesions
 - Bronchopneumonia
 - Septicaemia

Diagnosis of Leishmaniasis

Visceral

Amastigotes can be demonstrated by staining bone marrow, lymph node fluid, nasal scrapings (in the Sudan), liver biopsy or splenic aspiration specimens (although this can be a dangerous procedure). Rarely, amastigotes can be demonstrated in buffy coat preparations from peripheral blood.

Cutaneous and mucocutaneous

Demonstration of the parasite is possible in stained films from slit-skin smears taken from the indurated edge of an ulcer, biopsy of the margin of the ulcer and from mucosal scrapings in mucocutaneous type.

Culture (NNN or a liquid medium such as Schneider’s Drosophila medium or 199 medium with added fetal calf serum) is used for all types of material for diagnosis. Animal inoculation is rarely used now.

Polymerase chain reaction (PCR) can be used to diagnose and type the species of *Leishmania* present in biopsy or culture material.

Specific serological tests are IFAT, ELISA, direct agglutination test (DAT), or latex agglutination for IgG antibodies. An immunochromatographic test for rK39 antibody detection is also available.
Trypanosomiasis

African type: sleeping sickness

Caused by either *Trypanosoma gambiense* (chronic sleeping sickness, found in West Africa, the Congo, Zaire) or by *T. rhodesiense* (acute sleeping sickness, found in Zimbabwe, Tanzania, Zambia, Angola). Both have similar life cycle and morphology.

Life cycle in insect

Trypanosomes in blood ingested by tsetse fly

- Total developmental cycle in fly 20 days
- Reproduction by binary fission
- Enter salivary glands via ducts
- Metamorphose to epimastigotes and multiply
- Re-metamorphose to slender metacyclic trypomastigotes

Life cycle in humans

- Metacyclic trypanosomes injected by tsetse fly
- Multiply at site of injection
- Reproduction by binary fission as trypomastigotes
- Invade bloodstream and tissue spaces of various organs particularly lymph nodes initially
- But do not enter actual cells
- Then CNS

Tryomastigote

14 - 33 x 1.5 - 3.5 µm

Epimastigote in vector

Glossina spp.

Tsetse fly

T. rhodesiense or *T. gambiense*

No animal reservoir

Bushbuck antelope

Trypanosomes in blood ingested by tsetse fly

After cyclidal development: Metacyclic trypomastigote transfer possible

T. rhodesiense or *T. gambiense*

T. brucei

Nagana in animals

Giossina spp.

Tsetse fly

Trypanosomes in blood ingested by tsetse fly

After cyclidal development: Metacyclic trypomastigote transfer possible

T. rhodesiense or *T. gambiense*

T. brucei

Nagana in animals

Giossina spp.

Tsetse fly

Trypanosomes in blood ingested by tsetse fly

After cyclidal development: Metacyclic trypomastigote transfer possible

T. rhodesiense or *T. gambiense*

T. brucei

Nagana in animals

Giossina spp.

Tsetse fly

Trypanosomes in blood ingested by tsetse fly

After cyclidal development: Metacyclic trypomastigote transfer possible

T. rhodesiense or *T. gambiense*

T. brucei

Nagana in animals

Giossina spp.

Tsetse fly
Pathogenesis and pathology

Primary stage
- Multiplication at site of injection
- Surrounding inflammatory reaction

Secondary stage
- Parasitaemia and toxoemia
- Invasion of tissue spaces (not cells) of various organs
- Predominantly in Lymph nodes
- Damage to endothelial cells of blood vessels, surrounding granulomatous reactions and haemorrhages

Third stage
- Toxic degeneration and pressure atrophy of tissue cells

Clinico-pathological correlation

<table>
<thead>
<tr>
<th>Chronic sleeping sickness (Due to T. gambiense)</th>
<th>Acute sleeping sickness (Due to T. rhodesiense)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinico-pathological correlation</td>
<td>Differ only in degree</td>
</tr>
<tr>
<td>Firm, tender, painful red nodule 1–3 weeks</td>
<td>As in chronic</td>
</tr>
</tbody>
</table>

Fever
- Low
- Irregular
- Recurrent

General toxic symptoms
- Backache
- Headache
- Tachycardia
- Irregular skin rashes (circinate)
- Transient oedema face

Lymphadenopathy
- Typically post-cervical

Later anaemia
- Monocytosis

Slight enlargement liver, spleen

Progressive involvement of the CNS
- General symptoms of progressive encephalitis
- Focal signs uncommon
- Dementia

Death before CNS involvement or
Similar changes but more acute

Note on epidemiology
- Vectors of T. gambiense are riverine species, hence disease often epidemic:
 - G. palpalis
 - G. tachinoides
- Vectors of T. rhodesiense are game-attacking species, hence disease more often sporadic:
 - G. morsitans
 - G. pallidipes
 - G. swynnertoni

Body-fluid and tissue flagellates 75
South American type: Chagas' disease

Caused by *Trypanosoma cruzi*. The parasite is harboured in humans, domestic animals such as cats and dogs, and some wild animals, notably armadillos and opossums.

Morphology

- Axoneme
- Small parabasal body
- Large blepharoplast
- Trypomastigotes in blood of humans and gut of insect
- Amastigotes in cells of humans
- Promastigotes in gut of insect and transitional stage in humans

Life cycle in insect

Triatoma spp: the cone bug

- Trypomastigotes in blood ingested by bug
- Metamorphosis to and multiplication as epimastigotes
- Re-metamorphosis to small metacyclic trypomastigotes

Life cycle in humans

- Metacyclic trypanosomes in bug faeces deposited on skin
- Rubbed into bite puncture, abrasion or conjunctiva
- Enter histiocytes locally metamorphose to amastigotes and multiply by binary fission
- Carried to regional lymph nodes
- Some amastigotes metamorphose to trypomastigotes and invade blood and lymph
- Some amastigotes enter further cells
- Parasitized cells rupture
- Enter cells of many organs, metamorphose to amastigotes and multiply
- Posterior station development
- These infective forms passed in faeces
Pathogenesis and pathology

Local invasion of histocytes
Inflammatory reaction
Fibrosis: lymph blockage
Oedema

Chagoma

Regional lymphangitis
and lymphadenitis

Systemic manifestations

Invasion of local lymph nodes
Reticulo-endothelial hyperplasia with parasitization

Invasion of blood
and lymph vessels by trypanosomal forms

No multiplication
in bloodstream

Dissemination
to practically any tissue of body

Parasitization
of reticulo-endothelial and
parenchymatous cells by
amastigote forms which
multiply and destroy
cells

Recurring
re-invasion of the
blood by trypanosomal
forms and further
dissemination

Fundamental pathogenesis
Invasion and destruction of
tissue cells by multiplying
amastigote forms
with functional disability

- Myocarditis
- Tachycardia
- Heart block
- Emboli
- Aneurysms

- Generalized lymphadenopathy

- Encephalitis
- General or focal CNS signs and symptoms

- Splenomegaly

- Hepatomegaly

- Toxic depression of bone marrow
- Anaemia

- Destruction of intestinal nerve plexus
- Megaoesophagus
- Megacolon

Micro

Similar in all lesions
Amastigote forms in tissue cells e.g.

RE cells

Pseudocyst

CNS

Myocardial fibres

Thyroid

Little surrounding tissue reaction

Acute symptoms

- Fever
- Swelling of eyelids
 (Romana's sign)

- Acute form (often in children)
 - Blood and reticulo-endothelial cells predominantly involved
 - Fever
 - Oedema
 - Lymphadenopathy
 - Enlargement of liver and spleen
 - Sometimes encephalitis

Death or

Chronic form

- General toxic symptoms and focal signs
depending on localization
- Predominantly cardiac and CNS manifestations
- May be asymptomatic

Body-fluid and tissue flagellates 77
Laboratory diagnosis of trypanosomiasis

African type (sleeping sickness)

Demonstration of the parasite.
Microscopy of thin and thick blood films and buffy coat preparations.
Trypanosomes can also be seen in smears from bone marrow and centrifuged cerebrospinal fluid (CSF). Culture is possible but difficult.
Microscopic detection of trypanosomes in peripheral blood may be improved by the use of a mini-anion-exchange column or by the use of the QBC11® (Becton Dickinson) to concentrate the parasite.
The CSF might show increased protein and lymphocytes.

South American type (Chagas' disease)

Demonstration of the parasite.
Stained smears of peripheral blood show trypanosomal forms in C or S shape. Stained films of lymph node fluid show amastigotes. It is possible to show trypomastigotes by animal inoculation from blood and by culture from lymph node fluid. Histological methods from biopsy or post-mortem material. It is also possible to demonstrate the parasite through xenodiagnosis: clean bred triatomid bugs fed on the patient's blood develop trypanosomes in the gut.
Serology (e.g. by ELISA or IFAT) is the method of choice for the detection of chronic *T. cruzi* infection.
Laboratory diagnosis of trypanosomiasis

African type (sleeping sickness)

Demonstration of the parasite.
Microscopy of thin and thick blood films and buffy coat preparations.
Trypanosomes can also be seen in smears from bone marrow and centrifuged cerebrospinal fluid (CSF). Culture is possible but difficult.
Microscopic detection of trypanosomes in peripheral blood may be improved by the use of a mini-anion-exchange column or by the use of the QBC11® (Becton Dickinson) to concentrate the parasite.
The CSF might show increased protein and lymphocytes.

South American type (Chagas’ disease)

Demonstration of the parasite.
Stained smears of peripheral blood show trypanosomal forms in C or S shape. Stained films of lymph node fluid show amastigotes. It is possible to show trypomastigotes by animal inoculation from blood and by culture from lymph node fluid.
Histological methods from biopsy or post-mortem material. It is also possible to demonstrate the parasite through xenodiagnosis: clean bred triatomid bugs fed on the patient's blood develop trypanosomes in the gut.
Serology (e.g. by ELISA or IFAT) is the method of choice for the detection of chronic T. cruzi infection.
Refer to text for the following additional stained appearances:
- trichrome stain for coccidia and microsporidia spp.
- modified Ziehl-Neelsen for Cyclospora, Isospora and Cryptosporidium spp.
Index

A

African trypanosomiasis, 74-5, 78
Allergic reaction, hydatid disease, 26
Alveolar hydatid cyst, 26
Ameoba, 47-6
Ameoboma, 51
Ancylostomi spp., see also Hookworm
braziliense, 19
caninum, 19
duodenale, 8
ova, 8
Ascaris lumbricoides, 7
ova, 7, 36, 37
Ascites, S. mansoni, 29

B

Balantidium coli, 58
trophozoites and cysts, 58, 79
Bancroftian filariasis (W. bancrofti), 12
Bee tape worm, 21
Blackwater fever, 68
Blinding worm, 15
Blood flukes, 27-9
Body-fluid flagellates, 70-8
Bone, hydatid (ossseous) cyst, 25, 26
Brenchiaectasis, P. westermani, 35
Brugia malayi, 13

C

Calabar swelling, 14
Cancer/malignancy, schistosomiasis, 29
Cat liver fluke, 31
Cat round worm, 18
Cercariae
 Fasciola hepatica, 32
Fasciopsis buski, 33
H. heterophyes, 34
M. yokogawai, 34
O. felineus, 31
O. felineus/O. virensini, 31
O. sinensis (C. sinensis), 30, 31
Schistosoma spp., 27
skin penetration, 29
Cestodes (tapeworms), 20-6
general characteristics, 4
larval forms, 24
Chagas' disease, 76-7, 78
Chilomastix mesnili, 56
Cysts and trophozoites, 56, 79
Chryssops (vector), 14
Chyluria
B. malayi, 13
W. bancrofti, 12
Ciliates, intestinal, 58
Classification
helmintih, 4
protozoa, 40
body-fluid and tissue flagellates, 70
malaria parasite, 61
Clonorchis sinensis (Opisthorchis sinensis), 30-1
ova, 30, 31, 36
Coccidia, 41-4
Cone bug (vector), 76
Conjunctiva, L. lou under, 14
Cutaneous larva migrans (creeping eruption)
A. braziliense, 19
A. caninum, 19
G. spinigerum, 19
I. stenocephala, 19
Cutaneous leishmaniasis, 73, 74
Cyclospora cayetanensis, 43
Cyst
helmintih
hydatid cysts, 25, 26
P. westermani, 35
protozoa, 79
amoeba other than Entamoeba spp., 54, 55, 79
B. coli, 58, 79
C. mesnili, 56, 57
Entamoeba spp., 48, 49, 50, 55, 79
G. lamblia, 56, 79
S. hominis, 44
T. gondii, 59
Cysticeroid, H. nana/H. diminuta, 22
Cysticercus bovis, 21
Cysticercus cellulose, 20
Cystitis, schistosomiasis, 29

D

Diagnosis, methods, 1
Dientamoeba fragilis, 47
data cycle, 54
morphology, 54-5, 79
Diphyllobothrium latum, 23
ova, 23, 36
Disease mechanisms, 1
Dog round worm, see Toxocara canis
Dog tape worm, 25
Dracunculus medinensis, 17
Dwarf tape worms, 22
Dysentery
amoebic, faecal appearance, 53
balantidal, 58
T. trichiura, 6
E

Echinococcus granulosus, 25
Echinococcus multilocularis, 26
Eggs, see Ova
Elephantiasis
O. volvulus, 15
W. bancrofti, 12
Entamoeba histolytica spp., 45
Enoplax anus, 47
morphology, 54-5, 79
Endoplahtoma, T. omis, 18
Entamoeba coli, 47
morphology (vs E. histolytica), 49-50, 54-5, 79
Entamoeba dispar, 48
morphology, 54-5, 79
Entamoeba hartmanni, 47
morphology, 54-5
Entamoeba histolytica, 47, 48-53
laboratory diagnosis, 53
life cycle, 48
morphology, 49-50, 54-5, 79
pathology, 51-2
Entamoeba pelliculosa, 47
Enteroisbora vermicularis, 5
ova, 5, 36
Enterocyctozoon bieneusi, 45
Eosinophilia, tropical pulmonary, 12
Erythrocytic stage in RBCs (Plasmodium spp.), 63
Espundia, 73
Eye worm, 14

F

Fasciola hepatica (sheep liver fluke), 32, 32
ova, 36, 37
Fasciopsis buski, 33
ova, 33, 36
Filariasis, 12-16
Bancroftian (W. bancrofti), 12
Filariform larvae, S. stercoralis, 9
Fish tape worm, see Diphyllobothrium latum
Flagellates
body-fluid and tissue, 70-8
intestinal, 56-7
Flukes, see Trematodes

G

Gametocytes, Plasmodium spp., 64, 65
Giardia intestinalis (G. lambia), 56
cysts and trophozoites, 58, 79
Gnathostoma spinigerum, 19
Granuloma(s)
M. yokogawai, 34
Schistosoma spp., 29
Gravid segment, T. saginata, 21
Ground itch, 8
Growth effects, trichuria, 6
Guinea worm, 17

H

Haemoptysis, P. westermani, 35
Halzoun, 32
Helminths (worms), 3-37
classification, 4
definition, 1
Hematophagous trophozoites,
E. histolytica, 53
Heterophyes heterophyes, 34
Hoeppli reaction, 29
Hookworms, 8, see also Ancylostoma spp.
ova, 8, 36, 37
Host, definitive vs intermediate, 1
Hydatid disease, 25-6
Hydrocele
B. malayi, 13
W. bancrofti, 12
Hymenolepis diminuta (rat tape worm), 22
ova, 22, 36
Hymenolepis nana, 22
ova, 22, 36, 37
Hypoglycaemia in malaria, 68

I

Intraocular cyst, 25, 26
Isospora bissettii, 47
morphology, 54-5, 79
Iron deficiency anaemia, T. trichiura, 6
isospora bell, 41

Atlas of Helminthology and Protozoology 81
Phasmid
Pharynx, Periorbital Papillitis
Paragonimus P
Ova
Oriental Oesophageal Opisthorchis
Onchocerca
Nematodes
Necator americanus
Nematodes (round worms), 5-19
Nosema spp., 45

Oesophageal varices, S. mansoni, 29
Ochocerca volvulus, 15
Opisthorchis felineus, 31
Opisthostoma sinensis, see Clonorchis sinensis
Opisthostoma vicerrinii, 31
Orbital liver fluke, 30-1
Orbital schistosomes, 29
Osseous cyst, 25, 26
Ova (eggs), helmint, 36-7
Schistosoma spp., 36, 37, 38
damage caused by, 29

Papillitis (optic), T. canis, 18
Paragonimus westermani, 35
ova, 35, 36
Periocular oedema, T. spiralis, 11
Pharynx, F. hepatica, 32
Phasmid nematodes, 18-19
Pin worm, 5
Placenta in malaria, 68
Plasmodium spp., 61-9 (continued)
life cycle, 62
morphology, 63-7
pathophysiology, 68
Plasmodium falciparum, 61
laboratory diagnosis, 69
morphology, 63-7
Plasmodium malariae, 61
laboratory diagnosis, 69
morphology, 63-7
Plasmodium ovale, 61, 62
laboratory diagnosis, 69
morphology, 63-7
Plasmodium vivax, 61, 62
laboratory diagnosis, 69
morphology, 63-7
Phlebotomus spp., 45
Porcine tape worm, 20
Portal vein, S. mansoni, 29
Pre-erythrocytic stage, Plasmodium spp., 63
Pregnancy, placenta in malaria, 68
Proglottid, T. solium, 20
Protozoa, 39-79
classification, see Classification
definition, 1

Rat tape worm, see Hymenolepis diminuta
Red blood cells (RBCs), malaria parasite erythrocytic stage, 63
pathophysiology, 68
Renal involvement, see Kidney
Rhabditiform larvae
hookworms, 8
S. stercoralis
Ring form, Plasmodium spp., 64, 67
Round worms, see Nematodes
Sandfly (vector), 70, 71
Sarcocystis hominis, 44
Schistosoma spp., 27-9
haematobium, 28, 29, 36, 37
japonicum, 28, 29, 36
mansoni, 28, 29, 36, 37
ova, see Ova
Schizogony, Plasmodium spp., 63
Schizony, Plasmodium spp., 64, 67
Scolices
D. latum, 23
T. saginata, 21
T. solium, 20
Sheep liver fluke, see Fasciola hepatica
Sleeping sickness, 74-5, 78
Snail fever, 29
Snail host
Fasciola hepatica, 32
Fasciolopsis buski, 33
H. heterophyes, 34
M. yokogawai, 34
O. felineus, 31
O. sinensis (C. sinensis), 30
P. westermani, 35
Schistosoma spp., 27, 28
South American trypanosomiasis, 76-7, 78
Sparganosis, 24
Sparganum proliferum, 24
Spiriometra spp., 24
Squamous cell carcinoma of bladder, 29
Strobila
D. latum, 23
T. saginata, 21
T. solium, 20
Strongyloides stercoralis
Subconjunctival location, L. loa, 14
Subungual haemorrhage, T. spiralis, 11
Swimmer's itch, 29

Taenia spp.
ova, 20, 21, 36
T. saginata, 21
T. solium, 20
Tapeworms, see Cestodes
Thread worm, 5
Thrombocytopenia, P. falciparum, 68
Tissue protozoa, 59-60
flagellates, 70-8
TNF and malaria, 68
Toxocara canis, 18
ova, 18, 37
Toxocara cati, 18
Toxoplasma gondii, 59-60
Transmission of parasites, 1
Trematodes (flukes), 27-37
general characteristics, 4
Trichomonas spp. (vector), 76
Trichinella spiralis, 10-11
Trichomonas spp., 57
hominis, 57, 79
vaginalis, 57
Trichuris trichiura (whip worm), 6
ova, 6, 36, 37
Trophozoites, 79
amoebae other than Entamoeba spp., morphology, 54

I. boulchii, 54, 79
B. coli, 58, 79
C. mesnili, 56, 79
Entamoeba spp., 48, 49, 50, 79
hematophagous, 53
morphology, 54
G. lambia, 56, 79
Plasmodium spp., 64, 67
Trichomonas spp., 57, 79
Tropical pulmonary eosinophilia, 12
Trypanosoma spp., 74-8
laboratory diagnosis, 78
morphology, 70
Trypanosoma cruzi, 76-7
morphology, 70, 76
Trypanosoma gambiense, 74
morphology, 70
pathology, 75
Trypanosoma rhodesiense, 74
morphology, 70
pathology, 75
Trypanosomatidae, morphological stages, 70
Tsetse fly (vector), 70, 74
Tumour necrosis factor and malaria, 68

Uncinaria stenocephala, 19
Urolocular cyst, 26
Urethra, Trichomonas vaginalis, 57
Urinary tract infection
E. vermicularis, 5
S. haematobium, 29
Visceral larva migrans
G. spinigerum, 19
T. canis, 18
Visceral leishmaniasis, 72, 73
Whip worm, see Trichuris trichiura
Worms, see Helminths
Wuchereria bancrofti, 12

Index
Fourth edition

Atlas of

Medical Helminthology and Protozoology

in this fourth edition provides a unique diagnostic reference source for the microbiologist, tropical disease physician and medical scientist. The entire contents has been revised and re-structured and illustrated with new full colour diagrams and photomicrographs. For each organism there is a schematic life cycle, range map, morphological drawing and microscopic appearance. No diagnostic laboratory should be without this valuable resource.

CHURCHILL LIVINGSTONE
An Imprint of Elsevier Science

Visit our website for additional outstanding products

ELSEVIER SCIENCE www.elsevierhealth.com

ISBN 0-443-06268-4
Entamoeba histolytica (causing amoebiasis) (continued)

Morphology (continued)

<table>
<thead>
<tr>
<th>E. histolytica</th>
<th>Iodine preparations</th>
<th>Precyst</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown, diffuse</td>
<td>Glycogen</td>
<td>Brown, compact</td>
<td></td>
</tr>
<tr>
<td>Finely granular yellow green</td>
<td>Cytoplasm</td>
<td>Conspicuous granularity</td>
<td></td>
</tr>
<tr>
<td>Yellow ring with central yellow dot (karyosome)</td>
<td>Nucleus</td>
<td>Nuclear membrane with eccentric karyosome easily recognised</td>
<td></td>
</tr>
</tbody>
</table>

Stained by iron haematoxylin

Trophozoite

<table>
<thead>
<tr>
<th>Purplish brown</th>
<th>Cytoplasm</th>
<th>Greyish blue, coarsely granular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faintly granular</td>
<td>Inclusions</td>
<td>Vacuoles black, as are bacteria etc.</td>
</tr>
<tr>
<td>RBC black</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lined with minute black granules</th>
<th>Nucleus: Membrane</th>
<th>Thick with plaques of black chromatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small black central dot</td>
<td>Karyosome</td>
<td>Eccentric black dot or plaque</td>
</tr>
<tr>
<td>Trace only seen</td>
<td>Fibril network</td>
<td>More conspicuous; may have chromatin plaques</td>
</tr>
</tbody>
</table>

Precyst

<table>
<thead>
<tr>
<th>Round</th>
<th>Shape</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>As trophozoite</td>
<td>Cytoplasm</td>
<td>As trophozoite</td>
</tr>
<tr>
<td>Black chromidial bodies or bars</td>
<td>Nucleus</td>
<td>May have slender black chromidial bars</td>
</tr>
<tr>
<td>Glycogen (dissolved) replaced by vacuoles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cyst

<table>
<thead>
<tr>
<th>Grey-blue</th>
<th>Cytoplasm</th>
<th>Greyish-blue, granular</th>
</tr>
</thead>
<tbody>
<tr>
<td>As precyst, less conspicuous or absent</td>
<td>Inclusions</td>
<td>As precyst, less conspicuous or absent</td>
</tr>
<tr>
<td>Unstained, hyaline</td>
<td>Wall</td>
<td>Unstained, hyaline</td>
</tr>
<tr>
<td>As trophozoite 1–4</td>
<td>Nuclei</td>
<td>As trophozoite 1–8</td>
</tr>
</tbody>
</table>