ON THE
BONES, ARTICULATIONS, AND MUSCLES
OF THE RUDIMENTARY HIND-LIMB
OF THE
GREENLAND RIGHT-WHALE
(BALAENA MYSTICETUS).

BY
JOHN STRUTHERS, M.D.,
PROFESSOR OF ANATOMY IN THE UNIVERSITY OF ABERDEEN

WITH ILLUSTRATIONS.

From the Journal of Anatomy and Physiology, Vol. XV., January 1881

London:
MACMILLAN AND CO.
1881.
ON THE

BONES, ARTICULATIONS, AND MUSCLES

OF THE RUDIMENTARY HIND-LIMB

OF THE

GREENLAND RIGHT-WHALE

(BALAENA MYSTICETUS).

BY

JOHN STRUTHERS, M.D.,
PROFESSOR OF ANATOMY IN THE UNIVERSITY OF ABERDEEN

WITH ILLUSTRATIONS.

From the Journal of Anatomy and Physiology, Vol. XV., January 1881.

London:
MACMILLAN AND CO.
1881.
CONTENTS.

(A.) The Bones.
 I. The Pelvic Bone. 8
 II. The First Appendicular Bone (The Femur). 14
 III. The Second Appendicular Bone (The Tibia). 20

(B.) The Ligaments, Articulations, and Movements of the Femur and Tibia.
 I. The Knee-Joint. 22
 II. The Hip-Joint and the Ligaments of the Femur. 23

(C.) The Muscles. 34

Explanation of Plates. 55
ON THE

RUDIMENTARY HIND-LIMB OF THE GREENLAND
RIGHT-WHALE.

The following inquiry was undertaken with the view of seeing what light the dissection of the soft parts might throw on the nature of the bony rudiments which were discovered many years ago by Professor Reinhardt of Copenhagen, attached to the pelvic bone in the Greenland Right-Whale, and which he interpreted as thigh-bone and leg. All of these ten whales (Balaena

1 This interesting discovery was made by Reinhardt in 1843, in a new-born female. Some doubt was entertained by Eschricht whether the one subsidiary bone he had found in Megaptera, and the parts previously found by his colleague Reinhardt in Mysticetus, were not rather "most analogous to the marsupial bones of the marsupial animals," but the opportunity of examining the parts in a half-grown female Mysticetus, taken in 1857, and in a full-grown male in 1860, satisfied these two observers jointly, that the two subsidiary bones are to be interpreted as originally suggested by Reinhardt (Memoir on the Greenland Right-Whale, by D. F. Eschricht and J. Reinhardt, 1861; translated from the Danish by Reinhardt, in Ray Society's Publications, London, 1866, edited by Professor Flower). This interpretation is adopted by Professor J. P. Van Beneden of Louvain, from the examination of a pelvis sent to that distinguished cetologist by Reinhardt, "qui a été préparé par les soins du professeur de Copenhague" ("De la composition du Bassin des Cétacés," Bullet. Acad. Roy. de Belgique, 2 série, tome xxv., 1868). The entire skeleton of that recently captured adult female Mysticetus was at the same time obtained for the Museum of the University of Louvain. So far as I am aware, these are the only specimens of the tibia of the Greenland Whale obtained and preserved in museums previous to those in my possession. The tibiae are wanting in the skeleton of Mysticetus (captured in 1846) now in Brussels, obtained from the Copenhagen Museum; and also in the female skeleton in the Museum of the Royal College of Surgeons of London (1863), also obtained from the Copenhagen Museum. The tibiae had no doubt been lost in preparing the skeletons.
mysticetus) were taken in Davis Straits. I was greatly indebted to Messrs Patrick H. Macleod, John F. Murison, Donald S. Macdonald, and George Grant, for the care with which, at no small personal risk, they carried out my instructions for procuring these specimens in Davis Straits. The parts were sent to me in Aberdeen, where I dissected them as time permitted between 1873 and 1876. As the dissections proceeded I made life-size drawings of the muscles, &c., and from these the drawings of the soft parts now given are reduced. The descriptions were written from the dissections before me. I gave an abstract of the results of these dissections, and exhibited the specimens, at the meeting of the British Association in Glasgow in September 1876. So far as I am aware, no account had previously been published of the ligaments and muscles connected with these rudiments. The number of specimens which I procured has enabled me also to make observations on the characters and variations of the bones themselves.

Although, from the size of the masses, their fragmentary nature, and the decomposing condition of some of them, the dissections were not easy, the inquiry was a most interesting one. Nothing can be imagined more useless to the animal than rudiments of hind legs entirely buried beneath the skin of a whale, so that one is inclined to suspect that these structures must admit of some other interpretation. Yet, approaching the inquiry with the most sceptical determination, one cannot help being convinced, as the dissection goes on, that these rudiments really are femur and tibia. The synovial capsule representing the knee-joint was too evident to be overlooked. An acetabular cartilage, synovial cavity, and head of femur, together represent the hip-joint. Attached to this femur is an apparatus of constant and strong ligaments, permitting and restraining movements in certain directions; and muscles are present, some passing to the femur from distant parts, some proceeding immediately from the pelvic bone to the femur, by which movements of the thigh-bone are performed; and these ligaments and muscles present abundant instances of exact and interesting adaptation. But the movements of the femur are extremely limited, and in two of these whales the hip-joint was firmly ankylosed, in one of them on one side, in the other on both sides, without trace of disease, showing that these movements may be dispensed with.
The function point of view fails to account for the presence of a femur in addition to processes from the pelvic bone. Altogether, these hind legs in this whale present for contemplation a most interesting instance of those significant parts in an animal—rudimentary structures.

The parts will be considered in the following order:

In Table I, measurements are given of the pelvic bone from eleven Right-Whales, showing variations with sex, side, individual, and age.

In Table II, measurements are given of the femur and tibia from ten Right-Whales, showing variations.

(A) The Bones.

I. The Pelvic Bone—
 1. Its nature
 2. Characters and adaptations
 3. Differences with sex
 4. Individual variations
 5. Symmetry
 6. Foramen
 7. Cartilages of the pelvic bone, periosteum

II. The Femur—
 8. General characters
 9. Individual variations
 10. Weight, sex, symmetry
 11. Cartilages of the femur, periosteum

III. The Tibia—
 12. Condition, form, variations, perichondrium

(B) The Articulations.

I. The Knee-Joint—
 13. Synovial cavity, surfaces, ligaments, movements

II. The Hip-Joint—
 14. Position and movements of the femur
 15. The ligaments
 16. Synovial cavity
 17. The acetabular cartilage
 18. Variations and adaptations of the hip-joint in the several specimens

(C) The Muscles.

19. Relation of the genital organs in the male, inter-pelvic ligament, muscles. Relation in the female
20. The posterior muscular connections
21. The anterior muscular connections
22. Muscles between the pelvic bone and the femur
23. The muscular and tendinous connections of the tibia
24. Explanation of the Drawings
Table I.—Measurements of the Pelvic Bone from

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.</td>
<td>M.</td>
<td>35 Feet.</td>
<td>R. L.</td>
<td>R. L.</td>
<td>R. L.</td>
</tr>
<tr>
<td>II.</td>
<td>F.</td>
<td>58 to 60</td>
<td>R. L.</td>
<td>14 1/2 15 1/2</td>
<td>14 1/2 14 1/2</td>
</tr>
<tr>
<td>III.</td>
<td>F.</td>
<td>48</td>
<td>R. L.</td>
<td>17 17 1/2 15 1/2 15 1/2</td>
<td>7 1/2 7 1/2</td>
</tr>
<tr>
<td>IV.</td>
<td>F.</td>
<td>About 62</td>
<td>R. L.</td>
<td>15 3/4 14 1/2</td>
<td>13 1/2 13 1/2</td>
</tr>
<tr>
<td>V.</td>
<td>F.</td>
<td>44 to 45</td>
<td>R. L.</td>
<td>18 1/2 13 1/2</td>
<td>11 1/2 12</td>
</tr>
<tr>
<td>VI.</td>
<td>F.</td>
<td>42</td>
<td>R. L.</td>
<td>10 1/8 10 3/8</td>
<td>9 1/4 9 1/4</td>
</tr>
<tr>
<td>VII.</td>
<td>M.</td>
<td>48</td>
<td>L.</td>
<td>... 20</td>
<td>... 15 3/8</td>
</tr>
<tr>
<td>VIII.</td>
<td>M.</td>
<td>Good size, but not largest size.</td>
<td>R. L.</td>
<td>18 3/8 19 1/4</td>
<td>14 1/2 14 1/2</td>
</tr>
<tr>
<td>IX.</td>
<td>M.</td>
<td>Large.</td>
<td>R.</td>
<td>16 1/2 ...</td>
<td>16 ...</td>
</tr>
<tr>
<td>XI.</td>
<td>F.</td>
<td>Found on shore.</td>
<td>R.</td>
<td>18 3/8 ...</td>
<td>14 ...</td>
</tr>
</tbody>
</table>

Explanations of Table I.

1. The "lengths" are exclusive of the cartilages. The thickness of the cartilages which were present is given in the text (section 7).
2. The "posterior part" is measured to the anterior end of the promontory.
3. The "anterior part" is measured from the outer side of the promontory.
4. The "thickness at angle" is taken at the middle of the angular part of the bone.
5. By "angle" is meant the angle formed posteriorly by the meeting of the axis of the posterior part with the axis of the anterior part of the bone.
HIND-LIMB OF THE GREENLAND RIGHT-WHALE.

Leven Greenland Right-Whales (Balaena mysticetus).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L. R. L.</td>
<td>L. R. L.</td>
<td></td>
<td>Angle.</td>
<td>Weight.</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1/2 1</td>
<td>3 3/8</td>
<td>1 3/8</td>
<td>1 1/4</td>
</tr>
<tr>
<td>1 1/2</td>
<td>3/4 1/2</td>
<td>2 1/16</td>
<td>1 1/8</td>
<td>1 1/8</td>
</tr>
<tr>
<td>1 1/2</td>
<td>3/4 1/2</td>
<td>1 3/8</td>
<td>1 3/16</td>
<td>1 3/16</td>
</tr>
<tr>
<td>1 3/8</td>
<td>3/4 1/2</td>
<td>1 1/16</td>
<td>1 1/16</td>
<td>1 1/16</td>
</tr>
<tr>
<td>1 1/2</td>
<td>3/4 1/2</td>
<td>1 3/8</td>
<td>1 1/16</td>
<td>1 1/16</td>
</tr>
<tr>
<td>1 3/8</td>
<td>3/4 1/2</td>
<td>1 3/8</td>
<td>1 1/16</td>
<td>1 3/16</td>
</tr>
<tr>
<td>1 1/2</td>
<td>3/4 1/2</td>
<td>1 3/8</td>
<td>1 1/16</td>
<td>1 3/16</td>
</tr>
<tr>
<td>1 3/8</td>
<td>3/4 1/2</td>
<td>1 3/8</td>
<td>1 1/16</td>
<td>1 3/16</td>
</tr>
<tr>
<td>1 3/8</td>
<td>3/4 1/2</td>
<td>1 3/8</td>
<td>1 1/16</td>
<td>1 3/16</td>
</tr>
<tr>
<td>1 3/8</td>
<td>3/4 1/2</td>
<td>1 3/8</td>
<td>1 1/16</td>
<td>1 3/16</td>
</tr>
</tbody>
</table>

1. The measurements are given in inches and parts of an inch (English).

2. The weights are given in ounces and grains (English). In each column the first figures are ounces, the second figures are grains.

3. The weight of the pelvic bone in Whale No. V., of the right side, includes that of the ancylosed femur (weight of left femur, 2 ounces 430 grains). The weight of the pelvic bone in Whale No. VIII., of both sides, includes that of the ancylosed femur, for which fully 5 to 6 ounces may be allowed.
Table II.—Measurements of the Femur and Tibia from

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Head.</td>
<td>At middle.</td>
<td>At distal end.</td>
</tr>
<tr>
<td>No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>5 1/8</td>
<td>5 1/8</td>
<td>1 1 1/4</td>
</tr>
<tr>
<td>II</td>
<td>7 3/8</td>
<td>7 3/8</td>
<td>1 1 2/8</td>
</tr>
<tr>
<td>IV</td>
<td>4 1/4</td>
<td>3 1/4</td>
<td>2 3/8</td>
</tr>
<tr>
<td>VI</td>
<td>6 1/8</td>
<td>1 1/4</td>
<td>1 3/8</td>
</tr>
<tr>
<td>VII</td>
<td>8 1/8</td>
<td>1 3/8</td>
<td>2 1/8</td>
</tr>
<tr>
<td>VIII</td>
<td>7 1/8</td>
<td>2 1/8</td>
<td>2 1/8</td>
</tr>
<tr>
<td>IX</td>
<td>6 1/8</td>
<td>1 1/8</td>
<td>2 1/8</td>
</tr>
<tr>
<td>X</td>
<td>5 3/8</td>
<td>1 1/8</td>
<td>2 1/8</td>
</tr>
</tbody>
</table>

Explanations of Table II.

1. For the sex, and the length, of each of these whales, see the same ten whales in Table I.

2. The length of the femur is exclusive of the cartilages. The thickness of the cartilages which were present is given in the text (section 11).
Ten Greenland Right Whales (Balaena mysticetus).

<table>
<thead>
<tr>
<th>Femur.</th>
<th>Tibia.</th>
<th>Figured in the Drawings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>2(\frac{3}{8})</td>
</tr>
<tr>
<td>5-10</td>
<td>4-284</td>
<td>3(\frac{5}{8})</td>
</tr>
<tr>
<td>3-325</td>
<td>3-339</td>
<td>Injured</td>
</tr>
<tr>
<td>1-315</td>
<td>2-6</td>
<td>3(\frac{1}{4})</td>
</tr>
<tr>
<td>*</td>
<td>2-430</td>
<td>3(\frac{3}{8})</td>
</tr>
<tr>
<td>3-30</td>
<td>2-130</td>
<td>Not obtained</td>
</tr>
<tr>
<td>...</td>
<td>5-383</td>
<td>...</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>Injured</td>
</tr>
<tr>
<td>7-70</td>
<td>...</td>
<td>Not obtained</td>
</tr>
<tr>
<td>2-339</td>
<td>...</td>
<td>Not obtained</td>
</tr>
</tbody>
</table>

3. The breadth and thickness of the tibia "at base," were taken on a level with the posterior angle of the base, and therefore about \(\frac{3}{4}\) inch from the extreme anterior end.

4. As in Table I. the measurements are in inches, the weights in ounces and grains.

5. The weights of the femur in No. V. right, and in No. VIII., are included in those of the pelvic bones to which they are ankylosed. See Tablo I.
(A.) THE BONES.

I. THE PELVIC BONE.

1. Its Nature.—The use of the terms ischial, iliac, and pubic, applied to the different processes of the pelvic bone, diverging from the acetabulum, would be convenient and would simplify the names of the muscles and ligaments, but, as there is no evidence that the pelvic bone is developed from more than one centre of ossification, these terms are apt to mislead. The term innominate for like reason is objectionable. The anterior part no doubt suggests the horizontal ramus of a pubes, especially in some, but if we look at the pelvis of a seal, in which the ilium and femur are greatly reduced, that part of the pubes is seen to be directed backwards like the ischium. If we suppose the anterior of the two slender bones of the dugong, which afterwards ankylose together, to be omitted, we have the Cetacean pelvic bone represented by the ischium alone, sending off two processes, anterior and posterior, at its acetabular part. These are for muscular and ligamentous attachment. The posterior part, besides attaching muscles and ligaments, attaches the crus penis, entitling us to regard the one pelvic bone as an ischium. The pelvic bone will therefore here be spoken of simply as presenting a posterior part, an anterior part, and an angular part, the latter projecting externally as a promontory. The posterior part may be conveniently termed the body, the anterior part the beak.

2. Characters and Adaptations of the Pelvic Bone.—Viewed as a whole the bone presents two surfaces, superior and inferior, and three borders, internal, external, and anterior, the two latter separated by the promontory. Longitudinally, each surface presents two curvatures; the under surface, very concave along its anterior half, and convex along its posterior half; the upper surface, the reverse. Each of the three borders is concave, the outer and inner borders becoming more or less convex behind, according to the shape of the posterior end.

(a.) Posterior Part, or Body.—The hinder end, rough, attaches the great interpelvic ligament, and, together with the inner margin near it, varies greatly with sex. On the superficial surface a prominent ridge is seen, directed forwards and inwards. It attaches the great posterior ligament of the femur. The outer
slopes of the surface attaches, along its hinder half, the caudal muscular mass, the internal and broader slope, the perineal mass. The deep surface is occupied, along its hinder half, by the same muscles, but the dividing ridge is less marked on this surface. These ridges or elevations, more or less marked, may be traced forwards to the inner border of the bone, at or in front of the angle, and mark off the outer attachment of the great genital muscular mass.

(b.) Angular Part.—The characters here are the result of adaptations to a hip-joint; an outward extension of the bone supports a hollow for the reception of the femur, and is surmounted by a prominence to which ligaments and muscles are attached. Seen on surface, the promontory is more or less rounded, usually presenting two projections, one external supporting the acetabulum, the other, anterior, for muscular attachment, is more variable. Seen on the edge, the anterior part of the promontory is broad and rough, the outer part thin, being excavated by the acetabulum. If the cartilage is off, the part which it covered may be recognised as an excavated and usually rough area, of an ovoid form. The general acetabular hollow may be very shallow or it may be well cupped.

(c.) The Anterior Part or Beak tapers gradually from the broad part at the angle to the point. The breadth of this part varies much with that of the angle. About the middle, the breadth is usually about three times as great as the thickness. As at the angular part of the bone, the inferior surface is concave both ways, forming a continuous hollow for the reception of the femur. The more or less transverse position of this part of the pelvic bone adapts it for the attachment of strong muscles which pass backwards to it from the trunk. It also supports the thigh-bone, and attaches ligaments and muscles by which that bone is retained and moved.

3. Differences of the Pelvic Bone in the Male and Female.—These differences are more marked than in the human subject. In the female the pelvic bone is shorter, more bent, broader at the angle, and, above all, thinner at and towards the hinder end, than in the male. The shortness is partly owing to the greater bend. Thus in No. II., while the length is 14½ inches, the united lengths of the two portions is 23 inches, the angle being 90°;
while in No. VIII., the length being 18½ inches, the united lengths is 22½ inches, the angle being 145°. But, irrespective of angle, the measurements given in the table show that the bone is shorter in the female. In the 62 feet long female (No. IV.), with an angle of 135°, the length is about 15 inches, while in the 48 feet long male (No VII.) with an angle of 143°, the length is almost 20 inches, the united lengths of the two portions in each being, respectively, 19 and 24 inches. The greater bend of the bone in the female than in the male is probably related to the differences in the external organs or passages. The reason for the exceeding breadth of the bone at the angle in the female is not evident, unless it be the greater thickness in the male, and that the genital muscular mass goes farther forwards on the bone in the female. But the chief difference in the sexes is on the posterior part of the bone, which is so thick and narrow in the male as to be almost rounded in appearance, while in the female it is thin, and may be also broad. The adaptation here is seen by referring to the attachment of the interpelvic ligament to the bone. In the male the thick rounded ligament, supporting the crus penis, is attached to the hinder end of the bone, while in the female the more expanded ligament reaches forwards along the inner margin and upon the bone. It is on the inner side that the increased breadth is gained in the female. In the young female (42 feet long) the expansion towards the hinder end is little marked, nor is it much marked in No. X., while in No. XI., a very fully ossified specimen, the breadth near the hinder end is even greater than at the angle. This thinness of the hinder end is seen in all the female specimens before me, in marked contrast with the thick abrupt ending of the bone in the male.

By referring to the column of weights in Table I., it will be seen that the pelvic bone is much heavier in all the adult males than in any of the females. While among the adult females it varies from about 17 ounces to less than half that weight, in the three adult males it varies from 21 ounces up to 29, and in No. VIII. is probably about 35 ounces.

4. Individual Variations of the Pelvic Bone.—While presenting the above characters by which these bones may be recognised and their sex distinguished, they yet present considerable individual variations. Reference may here be made to
the measurements given in Table I. Among the females, the bend varies from an angle of 135° to 90°. In the two adult males, Nos. VII. and VIII., the angle is large (143° and 145°), but in the young male (35 feet long) it is only 120°. These specimens give us no ground to suppose that the angle changes with growth or age, although the ends grow at the cartilages. Nos. II. and V. (figs. 1 and 3) have the appearance of being fully adult or old, and they are very much bent (angles 90° and 115°); Nos. IV. (fig. 5) and XI., equally adult or old, have angles of 135°; while No. VI., imperfectly ossified, and No. III. (fig. 16) more fully ossified, have angles, respectively, of 125° and 130°.

The variation in robustness is great (as the column of weights in Table I. indicates), putting aside Nos. I. and VI. as immature. No. VIII. is much more robust than No. VII., especially at the hinder end, where it enlarges onwards to an abrupt rough end, over 3 inches by 2½ inches, facing backwards and inwards, when the interpelvic ligament is attached; while No. VII., though quite as thick at about 4 inches from the end, diminishes conically to a blunt end, not a third the size of the end of No. VIII. The third adult male, No. IX., is here intermediate in form between these two; broader than No. VIII., but not so thick, and terminating in a thick and rough but not expanded end. Among the seven female specimens the differences are still greater. Those of No. IV., the longest of these whales, are very slender, more so than in the 42 feet long individual. There is great variation also in the extent, form, and position of the expansion towards the hinder end. This expansion is much less marked in Nos. III., VI., and X. than in Nos. II., V., and XI.; in No. II. it is greatest at 4 inches from the end, giving an oval, or pointed, end; in No. V. it is greatest behind, giving a somewhat square-shaped end, most pointed externally; in No. XI. the form is intermediate between the two last.

There are likewise well-marked variations in the degree of the curvatures. The curvature of the inner border is increased when the bone is broad behind, or when, as in No. X., the hinder part of the body is curved inwards. There is variation in the abruptness with which the promontory stands out, influencing the curvatures of the outer and anterior borders, but variation in the
abruptness of the promontory is seen more where it joins the anterior part than where it supports the acetabulum. Nos. III. and IV. (figs. 16 and 5) illustrate this well; on the other hand No. XI. shows the greatest projection at the acetabulum, which in it is large and deep. The curvatures of the surface are, in the adult males, variously marked; least in No. VIII., in which the concavities are mainly owing to the enlargement at the hinder end. Among the females they are strongly marked in Nos. III. and IV., well marked in No. VI., and very slight on the body in Nos. II. and V., in which the expansion posteriorly is great. But in all these specimens, male and female, there is the well-marked concavity of the under surface at and in front of the angle, corresponding to the position of the thigh-bone.

The shortness of the beak in No. VI. is due to immaturity, and in No. X. also the ossification of this end is incomplete; but in No. IX., in which the ossification is complete, the beak presents a remarkable variation (fig. 7). Although the measurement in the table, taken from the outer side of the promontory, gives 5 inches, the length of the projection, from where it leaves the inner side of the bone, is only 3 inches (on the anterior border only 2 3/4), and, instead of being flattened like the others, it is a prism, the anterior and posterior surfaces broader than the surface next the femur. Variations of the acetabulum will be noticed with the hip-joint.

5. Symmetry of the Pelvic Bones.—Considering that, although arranged so as to present the appearance of a pelvic girdle, the girdle is without a symphysis and has no function of resistance to perform, the symmetry of these bones is remarkable enough. The a-symmetries noted in the table are slight; mainly little differences in the extent to which ossification has extended at either end. Nos. II., VI. and VIII., however, show considerable difference in weight between the right and left pelvic bone.

6. Foramen.—A small foramen is present in most of these specimens, near the inner border, in front of the angle. It is oval, scarcely as large as a crow-quill, and directed, generally, from the under to the upper surface, outwards and backwards. It is absent in both pelvic bones of Nos. II. and VI.; in No. VII., and in the right pelvic bone of Nos. IV. and V., and in
the left of No. X., although well-marked on the other bone in these three. In Nos. V. and IX. its direction is different; from the under to the upper surface, its direction in No. IX. is forwards and inwards, in No. V. forwards and outwards. ¹

7. The Cartilages of the Pelvic Bone.—In No. I., the young male, the cartilage of the hinder end is 1 inch in length, continuing the full thickness of the bone backwards and a little inwards, and then attaching the interpelvic ligament. The cartilage of the anterior end is 2 inches in length, tapering to a blunt point, to which a fibrous tuft is attached. In No. V., the anterior cartilage is about $\frac{1}{2}$ inch long, to which a fibrous tuft still remains attached. At the hinder end, which is broad and thin, the cartilage is 1 inch in length externally, $\frac{1}{2}$ inch internally, with a narrow strip along the end between the two corners. When the cartilages are off, the hinder end of the bone presents corresponding appearances; the bevelled corners $\frac{1}{4}$ inch thick with irregular surface, the intervening edge about $\frac{1}{8}$ inch thick and more finished looking. From these appearances of the bone, as well as from the length of this whale (44 to 45 feet), it may be inferred that it was not quite adult, although the right femur is anchylosed to the pelvis. In No. VI., the young female, both the cartilages are lost, exposing the irregular surfaces which have supported them. A cartilage was present on the anterior end of No. III. (about $\frac{1}{4}$ inch long), of No. IV. ($\frac{1}{2}$ inch), of No. VII. ($\frac{1}{6}$ inch) and of No. VIII (a thin layer); intervening between the fibrous tuft and the bone. Ossification having gone farthest on the inner, or posterior, border, the anterior end is very oblique in all the specimens,

¹ Comparison with the Pelvic Bone in the Great Fin-Whale.—Comparing these adult male specimens with that of the adult male Fin-Whale (Balanoptera musculus) which I figured in 1871 (Journal of Anatomy and Physiology) the differences are striking. In that Great Finner the posterior division is shorter by 3 inches (9 and 12) than the anterior, and attaches the crus penis along its posterior $\frac{3}{4}$; and the anterior half of the anterior division is flattened in the opposite direction. In Mysticetus, the posterior division averages about twice the length of the anterior. In the Finner the bone is less bent, and the promontory stands out farther and more abruptly, giving a breadth of 5 inches to the bone at this part. There is no acetabulum, or impression of the pelvic bone by the short ovoid rudimentary femur, which lay loosely in the hollow of the border of the bone, $1\frac{1}{2}$ inch in front of the promontory, to the hinder part of the under surface of which was attached the strong triangular ligament, 2 to 3 inches in length, which tied the femur to the pelvis.
except in Nos. IV. and V. in which the obliquity is moderate in No. II. in which it is slight, and in No. IX. in which the stunted beak tapers to a blunt point. In No. XI., a more contracted and rough portion, \(\frac{3}{4} \) inch in length, and about half the thickness of the bone from which it projects, has been concealed by the cartilage.

Any cartilage which may have existed at the hinder end of the other specimens (Nos. II., III., IV., VI., VII., VIII., IX., and X.) had been detached with the remains of the ligament. The thin flattened ending in Nos. III., IV., and VI., present the irregular surface of parts which have supported cartilage. No. II. comes to a sharp edge with a finished look, while at the anterior end the surface has evidently supported a cartilage. No. XI. has the same finished look behind. The abrupt ends in the three adult males are coarsely irregular.

It would seem from these facts that the cartilage of the posterior end is shorter in the young than that of the anterior end, and still more so in the adult, but these observations do not determine whether cartilage remains permanently at the hinder end. The cartilage of the acetabulum will be examined with the hip-joint.

The Periosteum of the pelvic bone is about \(\frac{1}{2} \) inch thick on the surfaces. On the margins, along the three concavities, there is a fibrous wall, \(\frac{1}{2} \) inch deep, prismatic in section, filling up the deepest part of the concavities and giving increased breadth.

II. The First Appendicular Bone (The Femur.)

8. General Characters.—Among these ten Greenland whales the thigh-bone presents great variation in form, but certain general characters may be recognised. All are sufficiently flattened to present, along the whole bone, two surfaces, separated by an anterior and a posterior border. There is evidently a head, followed by a more or less elongated neck. The neck is defined distally by two tubercles, one on each border, the posterior nearer the head than the anterior; and, beyond this, there is a more or less square-shaped and onwardly enlarging body, the end of which presents a flattened ovoid articular surface, from which, as from the head, a cartilage has been detached in the macerated bone. The right femur may be
distinguished from the left by observing that the deep surface is
longitudinally convex, and that the axis of the bone is bent with
the concavity backwards.

The Head is much flattened in all, an ovoid at the best, and
in some reduced to a mere rounded border. It is generally
placed obliquely to the axis of the bone, extending farther upon
the anterior than on the posterior border of the neck. It pre-
sents an irregular surface where the cartilage lay. The Neck,
a little more contracted than the head, expands gradually
outwards to the tubercles. The posterior tubercle attaches the
great posterior ligament of the femur. It may be regarded as
the great trochanter. If the ordinary mammalian femur, much
shortened, be flexed, adducted, and rotated outwards, it will be
brought into the position of the femur in Mysticetus. More
exactly, if the pelvis and femur of a seal be taken in the hands
and so manipulated, the correspondence becomes evident, and it
is seen that this tubercle is the trochanter major. It is situated
generally at about the junction of the proximal and middle thirds
of the bone, but may be somewhat to either side of that point.
It occurs as a triangular elevation of the posterior border,
varying in abruptness and degree of elevation. The anterior
tubercle is situated on the anterior border about the middle of
the bone, and is rather the angle where the sloping neck joins
the more horizontal body than a special process.

The Body includes from half to two-thirds of the length of the
bone, is the thickest as well as the broadest part, and increases
distally, especially in breadth, so as to give a somewhat trian-
gular instead of a quadrangular appearance to the bone. The
distal end is seen, when the cartilage is removed, to be ovoid, or
elongated in the more flattened specimens; a little convex
longitudinally, with its most projecting part in front of the
middle; to face obliquely downwards, from the ossification
having extended further on the deep surface, it may be for fully
\(\frac{1}{4} \) an inch, than on the superficial surface; and to present the
usual irregular appearance of parts which have supported car-
tilage.

Viewing the surfaces and borders of the femur as a whole, the
deep surface is longitudinally convex, except near the head, this
convexity of the femur corresponding to the concavity of the
pelvic bone at and in front of the angle. The superficial surface is, longitudinally, concave along the outer half, convex along the body, this convexity being gained by the increased thickness of the bone. The borders are thin along the neck, thick along body.

9. Individual Variations of the Femur.—Reference to the table (Table II.) will show that the adult femur varies in length from (without its cartilages) under 4 inches to 9 inches; in breadth, at the distal end, from $2\frac{1}{2}$ to 4 inches; and in thickness, at the same part, from 1 inch to $2\frac{1}{4}$ inches. Among these specimens the following variations of general form may be distinguished: (1) elongated and body square-shaped (Nos. I., II., and VII); (2) elongated and gradually enlarging (Nos. III. and VI.); (3) elongated and body triangular and thick (Nos. VIII. and IX.); (4) short and body thick (No. V.); (5) short and body flattened (Nos. IV. and X). The somewhat square-shaped body, but broader distally than towards the neck, may be regarded as the typical form of body. The neck shows considerable variety in regard to constriction, length, and bend; and the head no less so in regard to size.

Some of the variations presented by the specimens may be here noted. Nos. I. and II. (figs. 11, 12, 1 and 2) have the characters well marked, and resemble each other closely, but the body of No. I., that from the young male, is thin. In No. II. the body is unusually thick at the middle, gained by convexity of the superficial surface. No. VII. (figs. 8 and 9) presents a posterior tubercle projecting suddenly for $\frac{1}{4}$ inch on the cervical side, but with scarcely any projection on the distal side, giving the body a very abrupt commencement on the hinder edge. The want of an anterior tubercle tends to give the whole bone, in No. VII., a somewhat triangular appearance, but the body has the square form, broadening distally. The ovoid head is very oblique, with a pointed posterior end. No. III. (fig. 16) has a large and well-formed ovoid head. There is no distinction between neck and body, both tubercles being absent. The absence of the posterior tubercle was explained by the condition of the great posterior ligament, which was exceptionally broad and thin. This is the longest of these specimens. No. VI. resembles the last, but with a transition to the square form of
body. The trochanter is represented only by a distinct roughness at the part. No. IV. (figs. 5 and 6) is the smallest of all these specimens, but has the characters well marked. The head is an ovoid, scarcely half an inch in length. The neck, well marked off at both ends, is very much bent, the convexity towards the pelvic bone. This bend is most marked on the left femur, in which the neck, which is also longer than that of the right, meets the body at nearly a right angle. The bend is opposite the trochanter, 1½ inch from the head. The concavity thus formed on the under surface is 1 inch in depth. The body is very square-shaped. No. X. has a close resemblance in form to No. IV., except that the neck is much less bent, and it is altogether a larger bone by from a fourth to a third.

No. V. (figs. 3 and 4) is the most anomalous of these specimens. The right has a short (3 inches long) square-shaped and very thick body; a neck as broad and thick as a thumb; and a good-sized head thoroughly ankylosed to the pelvic bone at the acetabulum. The left is free. Though at first view very irregular looking, this femur is simply a body, like the body of the right, but without a developed head or neck, these being represented only by a thin lamina, ¾ inch broad at the free end, projecting for ¼ inch outward from the body at the part where the neck should be. The synostosis of the right side is evidently of long standing, though this whale was probably not quite adult (44 to 45 feet long, and pelvic bone not quite finished behind), nor do the bones show any traces of disease. The form of the head is seen anteriorly and externally, the latter part projecting a little beyond the outer edge of the back part of the promontory of the pelvic bone; while, posteriorly, only a furrow marks where the ankylosis has taken place. Here the hinder edge of the acetabulum rises about ⅔ inch from the level of the surface of the pelvic bone before it reaches the place of ankylosis. The ankylosis involves also part of the neck posteriorly, but anteriorly the neck is free, and deeply between it and the pelvic bone there is a fissure into which the scalpel passes. On this side, therefore, a good sized head has been ankylosed in its socket, while, on the left side, the head and neck would seem to have become atrophied. The rudimentary head of the left side, however, naturally occupied the same position in relation to the pelvic bone as the ankylosed head of the right side does.
In No. VIII. (fig. 10) the body, marked off externally by a very distinct anterior tubercle and a slight posterior tubercle, expands so much distally as to have a decidedly triangular figure. The smallness of the trochanter accords with the ankylosed condition of the hip-joint. The synostosis must be of old standing, being very complete, and it is nearly symmetrical. I have met with an ostitic condition of the bones several times in this and in other species of the Cetacea, but here there are no traces of disease, and the form of the synostosis in this specimen, as well as the fact itself, is interesting. The place of ankylosis is not in a hollow, but on a platform projected from the pelvic bone. This platform is 3½ inches in length at the base, and has an elevation behind of ¾ inch, in front of ¼ inch. The base lies obliquely across the angular part of the pelvic bone, a little external to the middle, the hinder half of the base being opposite the promontory and reaching back to a little way internal to the usual position of the acetabulum, and there smoothly subsides. The place of union is marked by a shallow furrow, ¼ inch or less in breadth, passing obliquely round. In length the place of union is 2 inches on both sides, in breadth 1 inch on the right, 1½ on the left side. The head and neck have somewhat broadened where they are soldered to the slightly concave top of the platform, but there is very little projection from the plane of the deep surface of the femur to meet the projection from the pelvic bone, on the left side none at all. On the left side the head is more sunk, though elevated enough to show its rounded outline; on the right side, the back part of the head projects obliquely for ½ to ¾ inch, like a rough finger-end, and is opposite the fore part of the recurved edge of the promontory. The platform above described may have followed or may have preceded the ankylosis, but if the heads in this case ever lay in the usual place of an acetabulum, they have been pushed forwards and inwards for fully 1½ inch by the growth of the platform. The direction in which the femur is ankylosed to the pelvic bone is not quite the same on the two sides, the left being more horizontal, so that its distal end is 1 inch behind that of its fellow; and more downwards, so that the interval between the end of the pelvic bone and the femur is ¾ inch on the right side and 1¼ inch at the corresponding part on the left side.
No. IX. (fig. 7) is the thickest, and presents several strongly-marked characters. The head and neck are slender for so massive a specimen. The tubercle on the anterior border is strongly and abruptly developed, presenting a rough ovoid elevation 1\(\frac{3}{4}\) inch in length by 3\(\frac{1}{4}\) inch in breadth. The trochanter begins abruptly on the cervical side, as in No. 7. The body is very thick, and somewhat prismatic, the third border, running as a sharp projecting edge along the deep aspect, from the trochanter to the distal end, nearly parallel to the anterior border and 1\(\frac{1}{2}\) inch from it. The end of the bone from which the distal cartilage has been detached, is oval, 4 inches by 2\(\frac{1}{4}\), the corners of the broader and partially flattened anterior end of the oval, being the parts to which the anterior border and the sharp ridge above noted run. The surface of the end presents a rough undulating hollow, caused mainly by the greater projection of the upper margin. This femur is much the heaviest of all these specimens, but had the ankylosis not prevented that of No. VIII. being weighed separately, it would probably have proved to be quite as heavy.

10. The column of weights, in Table II., also shows the variation among these thigh-bones. Among the adult specimens, those from the males are heavier than any among the females, but the difference between No. II., female, and No. VII., male, is not great. Nos. II. and III., female, are the longest of the whole series, and No. VI., female, would have been a large femur in the mature state. As this bone does not attach any of the muscles of the reproductive organs, we would expect that it should not present any fixed sexual characters, but that it would vary with the general muscularity. The weight of the femur is seen to vary from between about a third to about a fourth of that of the pelvic bone, but without a constant proportion; and in No. II. the heavier femur goes with the lighter pelvic bone. In No. VI., the least mature of the specimens weighed, the femur is not much under half the weight of the pelvic bone. The more advanced ossification of the femur accords with the observation of Reinhardt in the new-born *Mysticetus*, that ossification had begun in the femur, at its middle, while the pelvic bone was as yet entirely cartilaginous.

The symmetry of the femur, in these seven pairs, is notable, notwithstanding their great variation in form and size in different individuals. Except in No. V., in which the right is
anchylosed, and in No. IV., in which the neck of the left is more bent, the differences between the right and left are but slight.

11. The Cartilages of the Femur.—The cartilage of the head varied in thickness in the different specimens, from \(\frac{1}{4} \) to \(\frac{1}{4} \) or even \(\frac{3}{4} \) inch. That of the distal end varied from \(\frac{1}{10} \) to fully \(\frac{1}{2} \) inch, generally thickest on the anterior half although the cartilaginous prominence (tibial condyle) supporting the tibia is on the posterior half. The distal cartilage in Nos. II. and VII. was only \(\frac{1}{8} \) inch thick. In No. IV., \(\frac{1}{8} \) to \(\frac{1}{4} \). In No. III., at the tibial condyle \(\frac{3}{8} \), anteriorly only \(\frac{3}{8} \). In No. V., at the tibial condyle \(\frac{3}{8} \), anteriorly \(\frac{5}{8} \). In No. VIII., at the tibial condyle \(\frac{3}{4} \) to \(\frac{1}{4} \), anteriorly fully \(\frac{1}{2} \) inch. In No. I., the young male, at the tibial condyle \(\frac{1}{2} \), anteriorly \(\frac{3}{4} \) inch. In this specimen the cartilage of the head was \(\frac{1}{4} \) inch thick in front, \(\frac{1}{8} \) behind. The thickness of the cartilages must not be judged of by the surface appearances, as they overlap the bone at the edges, concealing it may be as much as \(\frac{1}{2} \) an inch of it. Sections must be made to see the true thickness at various parts.

The periosteum of the body of the femur is about \(\frac{1}{8} \) inch in thickness.

III. The Second Appendicular Bone (The Tibia).

12. Cartilaginous Condition.—Form.—This element of the rudimentary limb is in all these specimens entirely cartilaginous. It is of a triangular or pyriform shape, articulating by an oval synovial surface on its base, with the cartilaginous condyle on the end of the femur, and tapering to a blunt apex about the size of the end of the little finger, from which a fibrous band is prolonged. The body is somewhat flattened, the surfaces superficial and deep, the borders inner and outer. The extreme length, from the anterior angle, or tuberosity, to the apex is, in the adult specimens from \(3\frac{1}{2} \) to \(4\frac{1}{4} \) inches; from the external angle, \(\frac{3}{4} \) inch to 1 inch less. The greatest breadth, which is on a level with the external angle, is from \(1\frac{4}{4} \) to \(2\frac{2}{4} \), and the thickness at the same part is from 1 to \(1\frac{1}{4} \) inch.

The base presents a shallow oval articular surface reminding one of the glenoid cavity of the human scapula. This surface measures 1 to \(1\frac{1}{4} \) inch longitudinally, \(\frac{3}{4} \) inch to 1 inch across. Beyond its raised margin is a narrow furrow, surrounded by the
attachment of the capsular ligament of the joint. The end of
the base slants obliquely upwards, so that the articular surface
is seen on viewing the tibia from its deep, not from its super-
ficial aspect. By this character the right tibia may easily be
distinguished from the left. The anterior angle projects some-
what beyond the articular surface, forming a rounded projection
(anterior tuberosity of the tibia) to which part of the tendon of
the anterior muscular mass is attached.

The form of the body is somewhat variable. In No. VII., the
longest of the specimens, the deep surface is convex both ways,
the superficial surface flat, or a little concave transversely; the
outer border concave behind the base and thinnest, the inner
border undulating, with two concavities. In No. II., the outer
border is mostly convex, the inner mostly concave; both surfaces
are about equally convex transversely, and the left tibia is \(\frac{1}{2} \) an
inch longer than the right. In No. V., the base is so large that
both borders are concave, the right tibia (the side on which the
femur is ankylosed to the pelvis) is \(\frac{3}{8} \) inch longer than the left,
and is narrower than the left, so as to be almost round; both
are more convex transversely on the superficial than on the deep
surface, and both are bent longitudinally, the concavity on the
deep aspect. No. IV. is nearly straight, the undulations on the
borders slight, and is so equal as almost to appear a round
elongated cone, cut obliquely at the base.

Variations in the flexibility of these tibiae are mainly due to
the differences in form. Allowing for this, those of the adult
males are perhaps the least flexible, but the left tibia of No. II.
is as dense as they are, while the right is softer and more flexible.
In the young male (No. I.), the cartilage is so soft that it may
be bent so as nearly to make the ends touch.

The above measurements include the perichondrium. This
fibrous capsule is about \(\frac{1}{6} \) inch thick on the surfaces, thicker at
the borders. It is not very easy to fix the limit between the
perichondrium and the fibrous structures attached to it, but what
may be regarded as the perichondrium proper is from \(\frac{1}{4} \) to \(\frac{1}{2} \) inch
thick along the borders, thickest at the outer border. The carti-
lage proper is, therefore, not so large as in the measurements
given, except in length. From the breadth fully \(\frac{1}{2} \) an inch, and
from the thickness \(\frac{1}{3} \) inch may be deducted. In sections the carti-
lage is seen to be traversed by an abundance of vascular canals.
13. A well-marked synovial cavity was found between the femur and the tibia in all these dissections. The adaptation of the end of the tibia so as to form an oval glenoid articular cavity has been described above. On the femur the distal cartilage presents a corresponding oval elevation, which may be termed the condyle; 1 to 1½ inches in length, antero-posteriorly, ⅜ to 1 inch across; convex in both directions but more especially across; and placed towards the hinder part of the bone. The end of the femur, covered by its cartilage, presents two parts sloping in opposite directions from a more or less projecting angle, the posterior supporting the articular condyle, the anterior occupied by fibrous and muscular attachments, and invested by a thin perichondrium. The angle between the two slopes is greater in the natural state than on the macerated bone, from the projection of the anterior end of the condyle. When the cartilage is dried on the bone, the articular condyle still stands out as an oval elevation with well-marked edges.

The synovial membrane extends a little beyond the condyle and cavity, lining a surrounding furrow, to the outer part of which the capsular ligament is attached. The synovial membrane may be dissected off both of the cartilaginous articular surfaces; on the condyle of the femur it may even be pinched up with the forceps, and, after it is removed, a thin perichondrial layer may next be dissected off. No. V. presented, equally on both sides, an exceptionally extensive synovial surface, 2 inches in length on both tibia and femur; the breadth, 1½ on the femur, 1⅛ on the tibia. The condyle and glenoid cavity were 1½ inch in length, the anterior ½ inch of synovial membrane lying on soft tissue, in contrast with the firm polished cartilage of the condyle.

The capsular ligament surrounding the cavity is thick. It was generally thicker on the deep aspect (¼ to ½ inch thick) than on the superficial (⅛ to ¼ inch), thicker at the hinder angle (⅖ inch); at the anterior angle, of indefinite thickness from continuity with the tendinous insertions. In No IV., in which the cavity was small (length 1 inch, breadth ⅛) it was ½ inch thick all round. In No. V., in which the synovial cavity was large, the ligament was ⅛ inch thick along both sides, ½ inch at the hinder angle.
As noted with the tibia, the plane of this joint is oblique, so that when the tibia is pressed upwards, it rests obliquely upon the femur, but the opposition is mainly when the tibia is pressed outwards. It is at the same time a shallow ball-and-socket joint. The surfaces permit of inward and outward motion of the tibia (extension and flexion of the knee), and of gliding movements in any direction, but the adaptation appears to be for forward and backward gliding rather than for flexion and extension, and the direction of the two opposing muscular powers accords with this.

II. The Hip-Joint and the Ligaments of the Femur.

14. Position and Movements of the Femur.—The position of the head and shaft of the femur in relation to the pelvic bone is important as bearing on the arrangements of the hip-joint and the direction of the ligaments and muscles. The following indications have also enabled me to have the bones articulated and sketched in their natural relative position. The head generally projects beyond the outer edge of the pelvic bone. The following measurements include the cartilage on the head. The extent of the projection was, in No. III., 1\(\frac{1}{2}\) inches; in No. II. and No. VI., \(\frac{3}{4}\); in No. I., \(\frac{2}{3}\); in No. IV., in which the head is small, and in No. V., in which the head is much reduced, in each \(\frac{4}{4}\) inch. In some the head is placed entirely within the edge of the pelvic bone. In No VII. it was from \(\frac{4}{4}\) to \(\frac{1}{2}\) inch within, and the form of the macerated bone shows that it must have been so. In No. XI. also, the sharp crescentic outer edge of the acetabulum shows that the head cannot have projected. In No. VIII. (both thigh bones anchylosed), the original position of the head must have been quite within.

The position of the shaft is best indicated by taking its relation to the anterior border of the beak, at about their middle. The anterior border of the femur at that part is generally behind that of the pelvic bone about 1 inch, or less. The shape of the femur and the direction of the beak cause variations of this relation. In Nos. III. and VII. it was 1\(\frac{1}{4}\) inch; in No. IV. only \(\frac{4}{4}\) inch; in No. II. they were on the same level, the beak being nearly horizontal. In No. V., on the anchylosed side, the anterior border of the femur is nearly on a level with that of the beak, while on the left side it was about 1 inch farther back.
The movements of the femur require to be defined, before proceeding to consider the actions of the ligaments and muscles. The movement of the hinder edge and trochanter away from the cross part of the pelvic bone is rotation inwards; the opposite, rotation outwards. The forward movement of the shaft is flexion; the opposite, extension. Carrying the distal end of the femur downwards, towards the skin, is abduction; carrying it closer to the beak is adduction. There are also gliding motions of the femur obliquely inwards and obliquely outwards, in the direction of the bone. But all of these movements are naturally very limited. The ligaments are still entire on the left side of No. I., the half grown male, and permit these movements to the following extent. (a.) From extreme flexion to extreme extension, the distal end of the femur has moved \(\frac{1}{2} \) inch. (b.) From extreme adduction (contact with the beak) to extreme abduction, the distal end moves \(\frac{1}{6} \) inch, but the movement is naturally much less as the femur is separated from the beak by muscles and other soft tissue. When combined with rotation inwards, the abducing movement is more free, carrying the anterior border \(\frac{3}{4} \) inch away from the beak. (c.) From extreme rotation inwards to extreme rotation outwards, the distal end, at the posterior angle, has moved \(\frac{2}{3} \) inch; taken at the middle of the posterior border of the body, the extent is \(\frac{2}{5} \) inch. (d.) The extreme extent of the gliding movement is \(\frac{1}{5} \) inch. But these movements are more free now in the dissected specimen, than when the femur was padded by the muscles, areolar tissue and fat. In the early stages of the dissections the femur could just be felt to move. In No. V., which was preserved ligamentous for a time, it could barely be felt to move on the non-anchylosed side. Anchylosis of a joint so little movable is not surprising. My impression as to the gliding movement, however, is that, in some of the specimens, it was more free than above noted in No. I.

15. The Ligaments.—The ligaments connecting the femur to the pelvic bone may be arranged as those of the head and those of the body of the femur, and each of these groups subdivided into the posterior and the anterior. The posterior ligaments are two in number, the greater for the body, the lesser and shorter for the head.

(a.) The great posterior ligament (figs. 11 and 16a), arises from the dividing ridge of the under surface of the body of the pelvic
bone, and is inserted into the posterior tubercle of the femur (trochanter) and into the border on each side of it. It is from 8 to 10 inches in length according to the size of the subject, its origin not extending on the posterior fourth of the body. Beginning as a flat ligament, it becomes gradually thicker, and in its anterior half or third, where it has left the pelvic bone, it is rope-like and as large as a thick thumb. The point of attachment of this great ligament accounts for the presence of the tubercle representing the great trochanter. The extension of the insertion a little on each side of the trochanter gives a breadth of about 1½ inch at its attachment to the femur. In No. III. the whole ligament was expanded into a broad thick triangular membrane, attached to 6 of the 9 inches of the hinder edge of that femur, the fore part of the ligament arising from the ligament of the head, with which it formed a continuous sheet. This arrangement in No. III. accounts for the absence of the trochanter on that femur. Besides checking rotation inwards and also inward gliding of the femur, the great function of this ligament is manifestly to check flexion, to resist the forward traction of the great trunk mass of muscle. In No. V., however, in which the femur on the right side was ankylosed to the pelvis, the ankylosis evidently of no recent date, the ligament was large and little if at all smaller than on the side on which the femur was movable. The traction of the muscular fibres which arise from it may have sufficed to maintain the condition of the ligament.

(b.) The posterior ligament of the head (figs. 11 and 16b) is attached in front to the hinder edge of the head and neighbouring part of the neck, and reaches back for 3 inches or more on the pelvic bone. In form it is a thick strap (may be $\frac{3}{4}$ inch broad and $\frac{1}{4}$ thick), increases in breadth forwards, and leaves the pelvic bone at a variable distance from the femur. It may join the great ligament by an expansion but usually there is an interval. The direction of the great ligament is forwards and a little inwards, the direction of this ligament is forwards and outwards, at last projecting beyond the pelvic bone to reach the projecting head. This ligament checks rotation inwards, outward gliding, and extension. In flexion and extension, when the body of the femur moves forwards the head moves backwards, the bone moving on its neck, hence of the two posterior ligaments, one checks flexion the other extension.
(c.) The anterior ligament of the head (figs. 11 and 16e) arises from the promontory about 1 inch in front of the head of the femur, and passes back enveloping the head on its under, outer, and upper aspects for a breadth of about 2 inches, like part of a capsule. The direction of its outer part is obliquely outwards, according to the projection of the head, that of the inner fibres, on the superficial aspect, obliquely inwards, the most internal running a little way on the neck where they may form a special band. The outer part checks flexion, the inner extension, the head being carried in opposite directions. The under part checks rotation outwards, and outward gliding is checked by the whole ligament except the part to the neck. In No. VII., in which the acetabulum is deep and the head placed inwardly, this ligament was in the form of a membrane $2\frac{1}{4}$ inches broad where it arose from the sharp crescentic edge of the acetabulum, and passed inwards on the superficial aspect to be inserted, $2\frac{1}{2}$ inches in breadth, along the head and neck of the femur; the part to the neck was specially developed, representing probably the next ligament. When the head projects much, as in Nos. I. (figs. 11 and 12) and III. (fig. 15), the entire ligament is directed outwards.

(d.) The anterior ligaments of the body of the femur may be conveniently termed interosseous. They are two in number, one external (figs. 11 and 16d) passing obliquely from the promontory inwards to the femur; the other, internal (fig. 16e) passing from the beak obliquely outwards. The external arises from the inner side of the pelvic promontory, sometimes partly overlapped by the inner fibres of the last ligament, passes obliquely inwards and backwards and is attached to the anterior part of the deep surface of the body and neck of the femur, opposite to the attachment of the great posterior ligament, but reaching more externally. It is a strong ligament, square-shaped and short, averaging about 1 to $1\frac{1}{2}$ inch in breadth, $\frac{1}{3}$ in thickness, and $\frac{3}{4}$ in length. It checks extension, rotation outwards, and also inward gliding of the femur. The internal interosseous ligament is more expanded and membranous. Its attachment to the beak is for about 3 inches in breadth, beginning about 1 inch from the bony tip. The fibres, after slanting obliquely outwards, are attached along the deep surface of the body of the femur, at a variable distance between the anterior and posterior borders. The outer part is the strongest,
and may pass out on the neck, even as far as the head. This ligament checks extension and outward gliding. These two ligaments have a close relation to the two interosseous muscles. The internal lies either within or on the under aspect of the deep muscle, gives attachment to many of its bundles, and might be regarded as in part belonging to the muscle, but its outer part is more of the nature of a ligament. The external lies on the deep aspect of the corresponding muscle and is a strong ligament.

(c.) The ligaments by which each movement is checked.—The various movements are checked as follows. Flexion, by the great posterior ligament, and the anterior ligament of the head. These will be assisted by the great superficial aponeurosis and by the tibial band, yet to be described. Extension, by the two anterior ligaments of the body (interosseous), and by the posterior ligament of the head. Rotation inwards, by the two posterior ligaments. Rotation outwards, by the anterior ligament of the head, and the external interosseous ligament. Outward gliding, by both of the ligaments of the head, and by the internal interosseous ligament. Inward gliding, by the great posterior ligament, and the external interosseous ligament. Looking to the muscles, the direction in which movement most requires to be checked is forwards, with some inward gliding, and associated with these is the tendency to rotation inwards. Hence the great size of the great posterior ligament, which is so placed as to check these three movements.

Were the structures corresponding to the three great bands of the human hip-joint to be sought for here, we might recognize, in the great posterior ligament, the ischio-femoral band; in the external interosseous ligament, the ilio-femoral band; and in the outer part of the internal interosseous, the pubo-femoral band.

16. The Synovial Cavity of the Hip-Joint.—The synovial membrane is situated at the anterior part of the deep aspect of the head, extending a little way on the neck. It may reach also on the anterior part of the outer end of the head. It is more extensive on the pelvis than on the femur. On the pelvis it is elongated antero-posteriorly, on the femur generally transversely, as it covers only part of the head and extends in on the neck. It may be as large as 2 inches by 1 1/4, or as small as 4 by 1/2 inch, and there may be an additional synovial cavity. The membrane is distinct all round, at the reflexious and over
the articular surfaces. It can be pinched up and dissected off the cartilages, and lies loosely on the fibrous and fatty bed beyond the cartilages.

17. The Acetabular Cartilage.—This interesting cartilage might at first be mistaken for a growing cartilage of the promontory, but it is behind the prominence and spreads backwards and inwards to floor the articular cavity, and is evidently the cartilage of the acetabulum. Only part of it is seen when the synovial cavity is opened, appearing as the cartilaginous socket. To see it fully the thicker areolar tissue and the thicker perichondrium beyond should be stripped off. It is of an ovoid form, the more pointed end behind, and may be from \(1\frac{1}{2}\) to 2 inches in length, antero-posteriorly, and \(\frac{3}{4}\) to 1 inch in breadth. It projects a little beyond the outer edge of the bone, and this part of it comes in relation with the fibrous edging before noticed as skirting the margin of the pelvic bone. The limits of this cartilage are seen in figs. 11 and 12, and its place on the macerated bones is seen in figs. 1, 3, and 5.

18. The Variations and Adaptations of the Hip-Joint.—Although in Mysticetus there is a head and more or less of a socket, there is not the condition of a ball working in a resisting socket. On the contrary the head of the femur generally lies out of the socket, in the position which in human surgery we would call dislocation backwards. The femur lies nearly parallel to this part of the pelvic bone, pressing close on it near the head. It is only the deep aspect of the head which can come in relation with the pelvis, and it is the outer part of the neck rather than the head which bears the pressure and which forms the pivot on which the femur moves. In this reduced condition of function we would expect to find great variation presented by the parts at the hip-joint. The more noteworthy of these, with their adaptations in the several specimens, will now be considered.

(a.) No. 1, the half-grown male (figs. 11 and 12) will be more particularly noticed, as it afforded the best opportunity for complete examination. On the right side, the acetabular cartilage is fully exposed. It projects considerably outwards beyond the pelvic bone, towards the fore part as much as \(\frac{1}{2}\) inch; and at the same time projects downwards externally to form the edge of the acetabulum. Thus in transverse section it is prismatic; where it is thickest the attached surface and the dorsal surface each \(\frac{3}{8}\) inch, the acetabular surface \(\frac{5}{8}\). The total length is \(1\frac{3}{4}\) inch, but only the hinder two-thirds form the
cavity, the anterior third forming a prominence receding from the fore end of the cavity to a little way behind the middle of the promontory. The cavity is ovoid in form; length 1¼, breadth ¾ inch; concave in both directions, depth of concavity about ⅕ inch longitudinally, transversely very little; at outer edge it is slightly convex transversely. The direction of the groove of the cavity is obliquely forwards and a little inwards, in adaptation to the neck of the femur. There is thus formed a grooved cartilaginous bed adapted to receive the neck of the femur near the head, against the outer edge of which the inner edge of the head rests. The cartilage in this half-grown male is much thicker than in any of the other specimens. The extent to which this cartilage may ossify will affect the direction and form of the acetabulum on the macerated bone. Were it removed the surface of bone which supports it would recede from the level of the under surface of the bone somewhat as it does in Nos. VI. and V.; were it wholly ossified the acetabulum would not have the cup shape presented by Nos. VII. and XI., but merely the grooved prolongation behind the recurved back of the promontory which most of the specimens present.

The cartilage on the head of the femur is on the back part ¼ inch thick, on the fore part ½ inch, and receives here the anterior ligament of the head. The synovial membrane lines the acetabulum behind for 1 inch antero-posteriorly by ⅓ inch transversely. On the femur it covers the anterior and inner part of the deep aspect of the head, and reaches in for nearly half an inch on the neck. The synovial membrane at the neck lies on areolar tissue, this again on ligamentous tissue prolonged from the deep fibres of the anterior ligament of the head, and this on the periosteum of the neck. The exact adaptation, then, is that the broad oblique cartilaginous groove representing the acetabulum, receives the back of the obliquely directed neck of the femur, which is convex antero-posteriorly and fits the groove well and easily, abutting at the fore part against the cartilaginous prominence. The inner edge of the head lies exactly parallel to and closely fits the extreme fibrous edging of the pelvis which skirts the acetabular cartilage, and therefore hardly far enough in even to touch the outer edge of the cartilage except by its fore part. Hence the synovial membrane lines only the inner side of the fore part of the deep aspect of the head, besides covering part of the neck. It is therefore the neck not the head on which the femur plays, cushioned by fibrous and areolar tissue in addition to its periosteum and lubricated by a synovial membrane.

On both sides there is an additional synovial cavity in front of the head and concealed by the anterior ligament of the head; on the left side ⅓ inch in length, on the right side larger, but I am uncertain whether they did not communicate with the larger cavity.

As the synovial cavity of the hip-joint is exposed on the outside and behind without dividing any of the ligaments, it might at first be regarded as outside the capsule, and therefore as an outside bursa mucosa rather than a true synovial cavity of the hip-joint, but the true comparison to the fully functional joint rather is, that the head in *Mysticetus* is as it were dislocated backwards between the ilio-femoral and ischio-femoral bands (see paper by the author on the
Ligaments of the Hip-Joint in Man, *Edinburgh Med. Jour.* 1858), the part of the capsular ligament between these two bands being here wanting, so that the joint is left uninclosed externally except by the aponeurosis of the muscles. The cartilage of the head of the femur thus protruded is covered, except for about the fourth part of its deep aspect where it is lined by synovial membrane, by a soft cushiony perichondrium, and surrounded by loose areolar tissue which enables it to move within the adventitious capsule formed by the aponeurosis of the muscles. The cartilage of the head therefore performs but very partially the function of an articular cartilage.

(b.) In Nos. II., III., IV., V., and VI. the acetabulum presents the same type as in the last, a broad groove more or less shallow, corresponding or opposite to the neck of the femur. On the macerated bones the place of the acetabular cartilage is seen as a rough more or less excavated ovoid or elliptical area, most pointed behind; and the place where that cartilage projected beyond the bone is marked as an eroded edge, with a rather abrupt posterior beginning at 1 ½ to 2 inches behind the promontory. The acetabular cartilage was not thicker than \(\frac{1}{16} \) to \(\frac{1}{10} \) inch.

(c.) In No. III. (figs. 16 and 17) the same general adaptation is seen as in No. I., except that the acetabular cartilage does not become thick externally, the surface here becoming rounded off transversely; nor does it thicken anteriorly, there being here but a cartilaginous covering on the back of the well-recurved promontory. The synovial area on the pelvis was \(1\frac{3}{4} \) by 1 inch, the cartilaginous socket only \(1\frac{1}{4} \) by \(\frac{1}{2} \) inch, but the whole acetabular cartilage when exposed was \(2\frac{1}{4} \) by 1 inch. On the macerated bone what was the articular socket is seen on the hinder and inner part of the general area of the acetabular cartilage, close to the outer edge of the bone, which it excavates considerably. Depth of the hollow antero-posteriorly \(\frac{1}{2} \) inch. Transversely it is convex. Taking in the whole area, the hollow is deeper, \(\frac{1}{2} \) to \(\frac{3}{4} \) inch antero-posteriorly. On the femur the synovial surface is 1 inch antero-posteriorly, only \(\frac{4}{9} \) transversely. It covers the anterior half of the deep surface of the head and a little of the neck. Outwardly it does not reach farther on the head than to \(\frac{5}{8} \) inch from the extreme end. The cartilage of the head is continued farthest in on the deep aspect. As far as can now be determined the inner side of the fore part of the head lay in adaptation with the outer slope of the socket and on the external bordering fibrous tissue, much as in No. I., but the projection beyond the pelvis was greater than in No. I. according to the measurement made when the parts were in connection.

(d.) In No. VI. the parts were so rotten that I could not be sure whether a cavity, about \(\frac{1}{2} \) inch in diameter, between the fore part of the head and the edge of the acetabulum, was a synovial cavity or only a large oil cavity of decomposition. The cartilages were not examined, but the macerated bones of this not full-grown specimen show exactly where they lay. There is the same general form of both bones as in Nos. I. and III., but the head of the femur does not enlarge so much as in No. III. Its cartilaginous area (\(1\frac{3}{4} \) by \(\frac{1}{2} \) inch) is entirely terminal, not reaching at all on the deep aspect. The long flattened
neck is convex both ways; the last $\frac{3}{4}$ inch, which may be assigned partly to the neck partly to the head, is flat longitudinally. On the pelvis, there is a strongly recurved promontory, giving an elevation $1\frac{1}{2}$ inch in length transversely, and bounding a deep non-articular hollow in which the neck of the femur lies. The cartilaginous area on this eminence is $1\frac{1}{4}$ by fully $\frac{1}{2}$ inch, facing obliquely backwards, so that the cartilage must have further deepened the non-articular hollow. But the acetabulum proper has been on the outer edge, formed by the cartilage bending back here nearly at right angles as the mark shows. This part of the area is 1 inch by $\frac{1}{4}$, facing outwards and a little downwards. The back of the femur, where the neck and head meet, would press against this cartilaginous edging, and the whole arrangement, osseous and articular, is well-adapted to determine or to allow the various motions already defined. The cartilage-mark in this specimen might readily have been taken for that of a growing cartilage of the premontary.

The acetabulum in these three specimens may be defined as presenting the deeply-grooved type. In the next three it is comparatively shallow.

(c.) In No. II. (figs. 1 and 2) the bony acetabulum is very shallow (depth longitudinally about $\frac{1}{2}$ inch, transversely $\frac{1}{2}$), the promontory being very little recurved, and is placed entirely on the under surface, not reaching the outer edge except for a little behind. Synovial surface on pelvis $2\frac{1}{4}$ inch by $1\frac{3}{4}$; cartilaginous socket $1\frac{1}{4}$ by $\frac{8}{9}$, but the cartilage extends $\frac{1}{4}$ inch farther all round. This shallow cavity presents behind the middle a low mound, with a hollow before and behind it. The head of this femur is very flat, distinguishable from the neck only by its roughness and slight expansion. The head and neck on their deep aspect are quite flat antero-posteriorly and a little concave transversely. The cartilage on the end of the flattened head was $\frac{3}{9}$ inch thick, and sent an expansion inwards on the deep surface for $\frac{6}{8}$ inch. The macerated bone presents a corresponding roughness on the edge and deep surface, marking off what may be assigned to the head. The synovial area was 1 inch antero-posteriorly, $1\frac{2}{9}$ transversely. About the outer half of this lay on the cartilage, presenting a rounded articular surface $\frac{6}{9}$ inch in diameter, its outer limit $\frac{3}{9}$ inch from the extreme outer end of the cartilage-covered head. The adaptations are exact. The femur, by its rounded articular surface on the deep aspect of the head, presents a hollow, which rests and plays on the low mound of the acetabulum. In the rotatory movements of the shaft, the fore and hind edge of the head sink into the acetabular hollows, respectively before and behind the mound. The antero-posterior extensions of the synovial sacs allow the head, rotating on the mound, to move respectively forwards or backwards as the shaft moves in the opposite direction. This was on the right side. On the left side, the adaptations were nearly the same. Almost the whole of the synovial membrane on the femur was cushioned by a layer of fat, $\frac{3}{9}$ inch thick, beneath which lay a cartilage as on the right side. On the macerated bone the head is seen to be a little longer and less expanded than on the left side and as if the cartilage had extended less inwards on the deep surface.
(f.) In No. IV. (figs. 5 and 6) the position is, that the much bent neck, external to the bend, lies in the shallow non-articular hollow behind the promontory, a cushion of areolar and fibrous tissue, ½ to ¾ inch thick, intervening; and that the narrow neck and head, the latter projecting 1 inch beyond the pelvis, can be in contact with a socket only for ¼ inch antero-posteriorly. The synovial cavity was small (½ by ¾ inch), oval with the long axis oblique inwards and forwards. At the femur, on the left side, it touched the cartilage of the head; on the right side, it lay opposite the anterior half of the deep aspect of the head, and partly on the neck. On the pelvis there was at first almost no appearance of a cartilaginous socket, but on removing the synovial membrane and perichondrium, a good-sized acetabular cartilage (1½ to 2 inches by ¾ inch) came into view, as now seen on the macerated bones. The anterior half, convex both ways, is on the hinder slope of the promontory. The hinder half, where the femur touches, is narrow, concave longitudinally, convex transversely, and slightly notches the outer edge of the bone. The bent form of the neck seems to have removed the femur from much pressure on the acetabular edge, so that no socket had been formed beyond a synovial membrane. Above the convex neck of the femur was a cushion first of areolar tissue and then of fibrous tissue, ¾ to 1 inch thick, on which the femur moved and by which pressure of the femur against the pelvis was borne.

(g.) The bones of No. X. (a not very large and probably not full-grown female) were cleaned before they reached me. But the place of the acetabular cartilage is well-marked and its area closely resembles in position and form that on the macerated bones of No. IV. The promontory in front of the acetabular area is less recurved than in any of the other specimens, as if not yet fully formed. The end of the beak is incompletely ossified, but the posterior end of the body has a finished appearance.

(h.) In No. V. (figs. 3 and 4) a synovial sac, about ¾ inch diameter, lay on the deep aspect of the stunted head of the femur, separated from it by prolonged ligamentous fibres and loose areolar tissue. There was no articular socket, but on removing the coverings, the acetabular cartilage came into view. As the mark on the macerated bone shows, it was 2 inches by ¾ inch, commencing at the middle of the promontory, and tapering backwards; situated on the thickened outer border of the bone, facing obliquely downwards and outwards, convex both ways, except behind, where it is a little concave and narrow. This narrow part was opposite the outer and anterior part of the synovial sac. In this specimen the head, neck, and neighbouring part of the body of the stunted femur, appear to have moved on the areolar and fibrous tissue of the shallow general excavation of the pelvic bone. Another synovial sac, 1 inch in diameter, was found close behind the first, between the pelvic bone and the prominence caused by a greatly developed trochanter, covered by the ligaments inserted into it. It had no cartilage, and I was uncertain whether it did not communicate with the sac in front of it. On the right side, although there is old standing ankylosis of the hip-joint, the mark on the macerated bone shows that the cartilage has survived the ankylosis on the outer side, in two
patches, the posterior (1 inch by ⅔ inch) opposite the ankylosed head
the other (⅔ by ½ inch) on the back of the promontory. They corre-
spond to where the greater part of the cartilage lay on the non-anky-
losed side.

(i.) No. VII. (figs. 8 and 9) presents the best example of the cup-
shaped type of acetabulum. On the bone it is seen to be bounded in
front by a strongly incurved and recurved promontory, and externally
by a crescentic ridge continued from the promontory to the outer margin
of the body. Besides this there is a deep excavation of the bone, bound-
on the inner side by a smooth edge, more marked at the inner
and fore part, least defined posteriorly where its beginning is gradual.
It is oval in form, about 2 inches antero-posteriorly, 1½ transversely;
greatest depth, transversely ½ inch, antero-posteriorly ⅔ inch. Speak-
generally, it would hold half of a good sized hen's egg cut long ways.
The only part of this great cavity lined by cartilage and synovial mem-
brane was a small oval patch in front (⅔ inch long, ⅔ inch broad). The
place of this is well seen on the macerated bone, as a rough oval slightly
raised platform, at the fore and outer part, its superficial edge forming
part of the edge of the acetabulum. The rest of the bony acetabulum
is smooth and non-articular. On the large and obliquely placed head
of the femur the cartilaginous area (1⅓ by 1 inch) is placed on the end,
convex both ways, but not prolonged either on the deep or superficial
aspects. The synovial sac (1½ inch longitudinally, ⅔ inch transversely)
lay upon this, the deeper half between the head and the cartilaginous
part of the acetabulum, the more superficial half between the head
and the capsular ligament. The rest of the acetabulum was occupied
by stringy areolar tissue passing between the two bones. When the
bones are placed naturally together, the head is seen to be fully half
sunk in the socket, and entirely so when the femur is rotated inwards,
and then the oblique superficial margin of the head fits exactly the
crescentic edge of the acetabulum. The outer crescentic wall quite
prevents the head of the bone from gliding outwards, but the adapt-
ations allow of the other motions already defined. Pressure of the
head against the cartilage of the socket will take place most in the
movements of the shaft forwards and backwards, but also in the other
movements. The form of the acetabulum is compatible with much
more extensive movements forwards and backwards, and of rotation,
than the ligaments will allow. As already referred to, this ball and
socket form of the joint was accompanied by a modification of the
anterior ligament of the head into the form of a capsular ligament on
the superficial aspect of the joint, assisting to confine the head in the
socket. When the femur is rotated outwards, the very abrupt outer
side of the trochanter, in this specimen, is seen as if adapted to fit on
the inner edge of the pelvic bone.

(j.) The pelvic bone, No. XI., shows a less marked example of the cup-
shaped acetabulum than the last. Cavity oval antero-posteriorly, 2½
inches by about 1¼; depth antero-posteriorly ¼ inch, transversely only
about ¾ inch from the want of a high inner boundary. From the well
recurved promontory the outer lip sweeps outwards and backwards in
nearly a semicircle, coming in rapidly behind, so that this large cavity is entirely supported on a bony projection external to the line of the posterior division of the pelvie bone. The outer side of the cavity rises to a sharp-edged boundary, a form which the cartilage presented by the half-grown male, No. I., prolonged and ossified, would produce. There is no indication of the cartilage having been confined to any particular part of the acetabulum. This form of acetabulum is incompatible with a projecting position of the head or with outward gliding. It is adapted to contain a large ovoid head, like that of No. VII. This characteristic specimen of the right pelvie bone of an adult female *Mysticetus* was picked up on the shore at Davis Straits.

(k.) The bones of No. IX. were cleaned before they reached me. The stunted condition of the beak is noted in section 4. The part which was still covered by the acetabular cartilage, now a rough depression on the bone, is seen in the drawing (fig. 7.) It is situated obliquely on the foremost part of the under surface of the promontory, 1\(\frac{1}{2}\) inch in length, \(\frac{8}{16}\) inch in breadth, and is quite flat. This area corresponds well to the back of the head of the femur. The head has the usual oblique direction, forward and inwards, and the mark of its cartilage shows that it has been more broadly covered by cartilage on this surface than on the under surface. If this, as seems likely, was the adaptation, the femur, placed almost transversely, would conceal all the stunted beak except the root. Such a beak cannot have afforded extensive support to the body of this massive femur, but it now, in the bony state, fits pretty well against the anterior of the two deep surfaces of the prismatic body, and when the femur is moved a little backwards, the blunt point of the beak comes against a special projection on the femur, opposite the inner end of the anterior tuberele.

(C.) THE MUSCLES.

The muscles connected with these bones may be arranged in four groups, three of which connect them with other parts,—

(1) internally with the genital organs; (2) a posterior or caudal mass; (3) an anterior or trunk mass; (4) the fourth group those by which these bones are connected to each other.

19. Relation to the Genital Organs.—(a) In the male. Reference in the first place to the drawings and their explanation (figs. 11 and 12, showing both aspects of these parts), will greatly facilitate the understanding of this relation. The following account is from the dissection of the half-grown male, No. I.:— The crus penis has no direct connection with the pelvic bone, but is set upon a great ligament (interpelvic ligament) which connects together the hinder ends of the pelvic bones. The crus begins by a free conical end which projects an inch behind
the interpelvic ligament. Seen from above, the crura are of nearly uniform diameter (about 2 inches), and rounded in form, but larger transversely than vertically, and, after an oblique course of about 6 inches, unite in a broad common body, from which the single corpus cavernosum, scarcely larger than one of the crura, and more or less compressed laterally, is sent forwards. The space between the converging crura is occupied by a strong ligament (triangular ligament) which is pierced near its fore part by the urethra, and is partly concealed on the under aspect by the bulb of the corpus spongiosum, which projects backwards behind the point where the urethra enters it. On its under aspect the crus forms an ovoid enlargement or bulb, caused partly by a development of erectile medulla, partly by a great thickening of the fibrous cortex on this aspect.¹

¹ The differences of the internal structure of the penis before and behind the horse-shoe septum may be shortly noted here, as they are not without relation to the surrounding muscles. Behind the horse-shoe septum, the bulb of the corpus spongiosum, 5 to 6 inches in length by about 2 in breadth, is seen on section to be composed of erectile tissue enclosed in a white fibrous covering. The latter is 1 inch thick behind, gradually becoming thinner forwards to ⅙ or ⅛ inch; but at the horse-shoe septum it is ⅛ thick. All along the middle line it attaches the mesial septum between the posterior compressor muscles. The erectile tissue is loosely reticular, and presents many large and small vascular mouths. In the part behind the entrance of the urethra, about 2 inches in length, the erectile mass is semicircular in form, 1 ¾ by 1 inch, but only half that behind, where the cortex is thick. After the urethra has entered, the mass becomes smaller and more depressed (1 ¼ by ½ inch), the urethra adhering to the slightly concave upper wall. The triangular ligament forms the enclosing wall above. This ligament is continuous on each side with the fibrous tissue of the crus, and behind with the interpelvic ligament. It is a thick and firm structure, at first ¾ thick, thinner towards the perforation for the urethra, and here the fibres, instead of being transverse, curve forwards and outwards on each side of the urethral aperture. A number of arteries, 8 or 9 large and several smaller, here enter the crus, and several of large size enter the crus earlier and farther out opposite where the erectile tissue of the crus begins. The crus penis for the first two inches, including the conical end, is solid, composed of fibrous tissue densely interwoven. The rest of the crus contains an elongated medulla of erectile tissue, in the collapsed state about the size of the forefinger, largest transversely; but the fibrous cortex is easily stretched by the forceps to twice that diameter. It is finely reticular erectile tissue, showing some large and many small vascular mouths, the reticulum less open than that of the erectile tissue of the bulb. Its brown colour and open texture mark it off everywhere abruptly from the dense white fibrous tissue of the cortex, but the trabeculae are continuous with the cortex. This erectile medulla commences abruptly by a rounded end nearly on a level with where the fore part of the interpelvic ligament joins the crus; is largest 2 inches in front of this, diminishes a little along the anterior third of the crus, and finally at the
The Interpelvic Ligament above noticed is attached to the blunt posterior end of the pelvic bone (the cartilage intervening) horse-shoe septum unites with its fellow in the single and very differently-constructed medulla of the corpus cavernosum. The fibrous cortex is much thicker on the under than on the upper aspect of the crus; ⅓ inch above, below nearly 1 inch. The fibres are arranged circularly round the medulla, except those which give the increased thickness below. Here there is, as it were, a superimposed stratum forming more than half the thickness of the wall, composed of coarsely interlacing bundles, partly radiating to where they run out as the horse-shoe septum, and behind it running out in rough ridges on the surface in the direction of the fibres of the posterior compressor muscle. Over this area the surface of the crus is thus rendered hard and roughly streaked in contrast with the smoothness of other parts of the crus. Where the crus first unite, the white fibrous tissue, besides encircling the erectile medulla (here 3 inches apart), forms a great transverse commissure ⅔ inch thick vertically, but along the next 3 inches, till the erectile medulla meet, the transverse commissural arrangement of the intervening fibrous tissue is replaced gradually by an interlacement, and then by a breaking up into vertical bundles.

In front of the horse-shoe septum, sections of the part surrounded by the anterior compressor muscle show a different internal structure from that of the crus, or of the part in front of the muscle. The whole organ is flattened laterally, the medulla of the corpus cavernosum, also compressed laterally, has little of the erectile character, and the corpus spongiosum becomes smaller and more rounded. The proportions are seen in fig. 15, showing a transverse section made 3 inches in front of the horse-shoe septum, about midway between that septum and the back of the broad dorsal interval. Here the sizes are,—the whole organ, without the mesial septa of the muscles, vertically 4 inches, transversely, at the broadest part, 1⅔; medulla of c.c., 1 inch by ⅓ inch; c.s. vertically, ⅓ by 1 inch. The organ is less flattened at first, and also forwards as it emerges from the muscle, presenting a more a vertically oval form. The medulla of the c.c. is distinctly enough marked off by its brown colour and softness. At first it is blunt-pointed above, flattened at the sides (⅔ by ⅓ inch), and presents an obscure white fibrous septum rising from below, between which and the fibrous cortex passes the fine fibrous tissue which appears to form the bulk of the medulla. The fibrous cortex is thicker than the medulla, except below, where it is only ¾ inch thick. Towards the fore part of the muscle the medulla becomes gradually broader, and trabeculae radiate from the thick solid septum below. Just in front of the muscle the medulla is semicircular, 1 inch both ways, and the radiating trabeculae are more marked. At first the medulla contains at its upper part two large vascular months, represented farther forwards by one large mouth nearly ⅓ inch in diameter and nearly as large as the urethra. No other channels are seen until the medulla begins to broaden and become marked by radiating trabeculae, when, instead of one large vessel, there may be twenty of good size arranged mostly at the sides and top, the largest not at the top. The corpus spongiosum continues to present the same open erectile tissue, at first 1¼ inches transversely by ⅔ vertically in the collapsed condition. It diminishes forwards until, on emerging from the muscle, the entire mass is only half an inch in diameter, and now of a rounded form, having farther back been of a vertically oval form. The enclosing fibrous cortex is about ¾ inch thick. The urethra is now surrounded by the erectile tissue, but lies towards the top.
like a fibrous continuation of the bone. Here it is 1½ inch thick antero-posteriorly by 1 inch vertically, composed of soft flexible white fibrous tissue. After a length of nearly an inch it supports and mainly ends on the enlarging crus, but sends strong bundles over the deep aspect of the crus to join its fellow of the opposite side, thus forming a strong transverse ligament uniting the two pelvic bones. Its free posterior edge forms a prominence internal to the apex of the crus and is then concave. The length of the ligament between the cartilages is 8 inches, between the crura penis fully 4 inches, and here it is fully half an inch thick.

In the full-grown male, No. VII., only the parts near the bone remained. The interpelvic ligament was much larger than in No. I., about 2½ inches thick at the end of the bone. It sent two strong prolongations on the bone,—one on the superficial aspect for about 5 inches as a fibrous ridge, prismatic in section, its sides increasing the surface for the muscles attached here, and some of the fibres of the great posterior ligament of the femur arose from it; the other along the inner side of the bone at first sharply prismatic and then gradually less, until it subsided 4 or 5 inches forwards, presenting an approach to the greater expansion here in the female. The remarkable difference in size and form of the hinder end of the pelvic bone in Nos. VII. and VIII. is noted under section 4. These prolongations in No. VII. may have been partly related to the tapering form of the end of the bone, while the great blunt end in No. VIII. would seem to imply the abrupt attachment of an enormous interpelvic ligament.

The Genital Muscles.—A glance at the drawings (figs. 13 and 14) will show that the crura penis and first 12 inches of the corpus cavernosum are enclosed by a great tubular muscular mass. On the upper aspect it appears as one muscle (the great compressor), mostly meeting its fellow in a median raphé, which is the free edge of a fibrous septum, but separated at the fore part by a broad elongated interval in which the corpus cavernosum appears. On the under aspect another median raphé, also the free edge of a deep fibrous septum, runs the whole

Though not over ½ inch in diameter in the sections, the urethra admits of being greatly distended, so as easily to admit the forefinger where the corpus spongiosum is large enough.
length, but the muscular mass is divided by a semicircular raphé, the free edge of a deep fibrous septum (horse-shoe septum) into an anterior and posterior portion. The anterior (the great compressor) is continuous with, or part of, the great muscle seen on the upper aspect; the posterior (posterior compressor) is completely cut off from it by the septum, and is concealed at the sides and behind by another muscle (levator ani), also attached to the horse-shoe septum, from which it passes backwards to a superficial median raphé and behind that to the rectum, separated from the posterior compressor by the rope-like retractor muscle.

(1.) The great Compressor Muscle arises continuously from four different parts. First, as seen on the upper aspect (fig. 14, l), it arises from the whole length of the inner slope of the body of the pelvie bone, and from the inner border as far forwards as the middle of the angular region, a length of 8½ inches in this half-grown specimen. The fibres, in large bundles, pass obliquely forwards and inwards, and are inserted into the mesial raphé and septum. The inner part of this aspect of the crus penis is only covered by the muscle, separated by loose areolar tissue, but the muscle is attached to the outer part of this aspect of the crus, arising from it behind the pelvie bone, the deeper fibres soon inserted into it farther on, while the more superficial pass to the mesial septum. In the triangular space between the two muscles, before they meet (5 inches forwards) in the raphé, are seen the triangular ligament and the neck of the bladder, with its thick red muscular walls, seen under the microscope to be composed of striped fibre. Towards the back part the muscle is 2½ inches thick; near the fore part of the narrow mesial raphé, 1 inch thick. The whole length of the insertion is 14½ inches, 9 of which belong to the narrow median raphé. The muscular bundles in front of this, opposite the broad white interval (which is 6½ inches long by 1½ to 1¾ broad), are derived from the origins of the muscle on the under aspect. These (fig. 13, l) are, from the inner slope of the under aspect of the pelvie bone, by fully as much in breadth and in forward extent as on the upper aspect; from the whole anterior wall of the horse-shoe septum, and from the crus and corpus cavernosum in front of that septum; and lastly, from the mesial raphé and septum.
for a length of 11 inches. From these origins the fibres, in thick bundles, pass upwards and outwards round the sides of the crus and corpus cavernosum, forming semi-spirals as they pass to the upper aspect, now with a forward and inward direction, to be inserted into the corpus cavernosum; the more anterior and more superficial fibres reaching to the sides of the white interval above noticed, the more posterior and deeper fibres terminating farther back and farther out on the sides of the flattened corpus cavernosum. Thus the whole surface of the corpus cavernosum has muscular fibres closely attached to it, the deepest passing from one part of the penis to another. This vast muscle in Mysticetus corresponds to two muscles in human anatomy; the part from the inner slope on both aspects of the bone to the erector penis (ischio-cavernosus), enormously developed; the part from the mesial raphé, on the under surface, to the anterior part of the accelerator urinæ (bulbo-cavernosus); the part from the front wall of the horse-shoe septum here renders the two muscles continuous.

The great thickness of the muscular mass surrounding the penis here is shown in fig. 15, the section being made 3 inches in front of the horse-shoe septum. The semilunar mass on each side, 7 inches vertically, is $2\frac{1}{2}$ to 3 inches in thickness. The inferior mesial septum here is $2\frac{1}{2}$ inches in depth, $1\frac{1}{2}$ at midway, and diminishes forwards. The supporting and compressing power of such a mass of muscle must be enormous.

The horse-shoe septum shows itself as a raphé on the surface (fig. 13), and, when dissected, is seen to be a great septum completely separating the muscles and attached to the penis. It begins just within the hinder ends of the pelvic bones and crosses the mesial line 6 inches in front of this. The place of attachment to the penis is shown in fig. 11, part on one side being left entire to show the depth. At the middle of each side it is 2 to $2\frac{1}{2}$ inches deep, diminishing outwards, and also less where it crosses the corpus spongiosum. At halfway to the surface it is about $\frac{1}{2}$ inch thick, at its attachment to the crus about $\frac{1}{2}$ inch, where it crosses the corpus spongiosum 1 inch in thickness. Its attachment along the side of the crus is much nearer the under than the upper aspect, and the direction of the septum as it lies between the muscles is oblique forwards
and outwards. The whole anterior surface attaching the great compressor muscle is comparatively smooth, the posterior surface is coarsely ridged in the direction of the fibres of the posterior compressor, and in continuation of like ridges on the hard surface of the crus behind it. In sections the septum appears as if a prolongation of the special fibrous stratum which thickens the under surface of the crus, and may be regarded as a continuation of that stratum, shelving to the surface in relation to the attachment and action of the posterior compressor-muscle.

(2.) The Posterior Compressor Muscle (fig. 13, m) arises from the median raphé and septum, extending from the horse-shoe septum to a little behind the bulb, where the mesial septum is attached to the triangular ligament. The median septum at midway is over 1 inch in depth. The fibres in thick bundles pass obliquely forwards and outwards, the anterior bundles more forwards, the posterior bundles more outwards, to be inserted into the whole fibrous surface covered by the muscle, the deeper into the fibrous coat of the bulb, the most superficial into the hinder surface of the horse-shoe septum, the intervening and greater part into the hard fibrous surface of the crus. Internal to the middle the muscle is fully 2 inches thick, halfway out 1½, becoming thinner outwards, but a thick muscle throughout. The most posterior fibres of the muscle are nearly transverse in direction, and are attached internally to the triangular ligament where the median septum joins it. Just behind this is a separate transverse bundle of the bulk of the little finger, but more flattened, attached to the free conical end of the crus, and passing across to the opposite side without interruption or intersection.

Action of these Muscles.—The general effect of these muscles must be support and powerful compression of the parts of the penis on which they lie. The posterior muscle will compress strongly the bulb of the corpus spongiosum and the urethra, and by its outer part the bulb of the crus, assisted in this by the counter pressure of the back part of the great muscle on the dorsal aspect. The presence of the horse-shoe septum will enable the posterior muscle to act specially on these parts. The anterior muscle will, by its tubular form, powerfully support and compress the penis in front of the crura, and at the same time draw the pelvic bones inwards. The crura penis
having no direct bony attachment, it is not very evident how the penis can be firmly supported unless the interpelvic ligament can be tightened, but it is not evident by what muscular action the pelvic bones can be pulled outwards behind. The enlargement of the crura, surrounded and grasped by the great muscles coming from the pelvic bones, may serve to give sufficient fixity to the organ, converting the pelvic bones and penis into one firm mass, while the muscles at the same time will expel the contents of the urethra.

(3.) **Levator Ani Muscle.**—As the back part of this muscle was mutilated and only a short part of the rectum present, I am not quite certain of the correctness of the name. As seen in fig. 13, i, it arises from the outer half of the horse-shoe septum, superficial to the attachment of the posterior compressor, and, backwards, from the fibrous tissue at the hinder end of the pelvic bone. The bundles curve inwards and backwards, the internal, nearly half the muscle, meeting their fellows, after a course of about 5 inches, in a median raphe in front of the rectum, for 2½ inches. The outer and thicker half of the muscle was divided where the bundles appeared to have been passing back by the side of the rectum, only one large bundle, the size of the little finger, having been left in the mutilated parts, passing to and spreading on the side of the rectum, where the divided ends of other red bundles were also seen. It is a strong muscle, 1½ inch thick behind, 1 inch at the middle, diminishing forwards to a thin free edge, where it conceals the outer and back parts of the posterior compressor, from which it is soon separated by areolar tissue and fat and internally by the rope-like retractor muscle. Apparently assisting the muscle in supporting the rectum, is a considerable fibrous bundle (fig. 14, l), attached above to the prominence on the free edge of the triangular ligament, and passing downwards and inwards to the side of the rectum, on which it spreads, in continuity with pale muscular bundles.¹

¹ *The rope-like Retractor Muscle.*—Only the posterior attachments and perineal stage of this rope-like body remained. As seen in fig. 13, k, lying between the levator ani and the deep compressor muscle, it is of a rounded form, about the thickness of the fore finger or thumb, and near its fellow of the opposite side. It is enclosed in a strong but soft fibrous sheath, of a white colour, and internally is composed, among plentiful areolar tissue, of pale yellow bundles disposed longi-
(b.) In the female, the interpelvic ligament is a great structure. As seen in fig. 16, rr, besides being attached to the end of the pelvic bone, it sweeps forward along the inner edge as a projecting ligament, gradually subsiding at about the middle of the posterior division of the bone, into the thick fibrous edging of this border of the bone. From this extensive attachment it passes nearly transversely inwards, the anterior edge thin and deeply concave, so that the transverse portion increases in breadth towards the middle line. I have not had an opportunity of examining its relations at the middle line in the female, 4½ inches being the greatest extent of the transverse part present in any of these specimens. This part measured 6 inches anteroposteriorly at its middle, 7 towards the middle line, but in all the specimens a portion of the back part had been shaved off. At its attachment to the pelvic bone it extends on both surfaces of the bone, and both surfaces of the entire ligament are marked by a curved ridge indicating the extent to which this fibrous mass gives origin to the great genital muscular mass. On the under aspect the surface is concave in front of this ridge, and the ligament thins rapidly to the anterior concave edge; on the deep aspect the surface is abruptly scooped out backwards, so that the muscle sinks into a groove, an inch deep, overlapped by the ridge.

The genital muscular mass, in the female, arising from the pelvic bone and interpelvic ligament, is very large, as seen in fig. 17, ll, which shows the whole extent of the mass present in any of the specimens. The section of the mass two inches from the bone, measured, in the adult, 12 inches in length and 6 inches in

tudinally, which, under the microscope, are seen to be made of unstriped muscular fibre. Traced backwards, it becomes flattened between the levator ani and the posterior compressor, turns round the free edge of the triangular ligament, and breaking up into several longitudinal fasciculi, is attached to the neck of the bladder by tendinous bands, the chief band close to the middle line. Four inches after its origin from the bladder and 1 inch after it has appeared below the triangular ligament, it receives a fasciculus from the side of the rectum, but the origin from the bladder is much larger than that from the rectum. In the figs. 13 and 14, the rectal connection is seen on the right side only, the left side having been cleared. The bundles are continued on the rectum in pale circular bundles. A little behind these come the pale circular bundles from the suspensory ligament of the rectum, and soon behind these the more pronounced muscular stratum from the levator ani muscle.
thickness. It arises posteriorly, from the greater part of the transverse portion of the interpelvic ligament, as far back as the curved ridges above noticed; externally, from both surfaces of the anteroposterior part of the same ligament, and beyond it from the inner slope of both surfaces of the pelvic bone as far forwards as in front of the middle of the angular region, this attachment to the pelvic bone corresponding to that of the great compressor in the male; and anteriorly, from the outer half of the beak, at the inner border and a little way on the under surface. The mass forms coarse bundles directed obliquely inwards and forwards, but more transversely toward the fore part. The part from the beak, consisting of several large fasciculi, is separated from the rest by loose areolar tissue, and may have been a separate muscle.

20. The Posterior or Caudal Muscular Mass (figs. 13, 14, 17, and 18, a).—This great mass is attached to rather more than the posterior half of the body of the pelvic bone, along the outer border and over both surfaces as far in as the intersecting ridge, approaching there the outermost origins of the great genital mass; and, behind the bone, to the outer and posterior part of the interpelvic ligament. It soon gathers into an ovoid mass, the transverse section of which, two inches behind the pelvic bone, was 7 to 8 inches transversely by 5 inches vertically; in the half-grown male, 4 to 5 inches by 3 inches. As far as present in these specimens, it showed no subdivision. Its direction is apparently inwards as well as backwards, and it may be regarded as a large ischio-caudalis muscle, probably continued backwards to the chevron bones. Acting from behind, it will powerfully retract the pelvic bone and interpelvic ligament, with all the apparatus attached to these parts, the direction of the movement being probably inwards as well as backwards. In the half-grown male, its origin from the interpelvic ligament (for about 1 inch) was bounded internally by a fibrous band or tendon (shown in fig. 14), about the size of the little finger, which after giving origin outwardly to part of the caudal mass, looped inwards to join the suspensory ligament of the rectum, leaving between them and the outer concave edge of the triangular ligament a well defined oval passage (fig. 14, u), admitting three fingers, the contents of which had been removed.

21. The Anterior or Trunk Muscular Mass (figs. 13, 14, 17, and
18).—This mass of muscle, coming back from some part of the trunk, is attached to the femur and tibia as well as to the pelvic bone. It is larger than the caudal mass. In No. II., on transverse section at four inches from its insertion, it was 10 inches transversely, with an average thickness of 3 inches. There was enough present in this specimen (5 inches) to show a distinction into two muscles,—an external, the great mass, directed backwards and inwards, attached to both femur and pelvic bone; and an internal, in the form of a pyramid, or bunch of pyramids, coming back from a rounded tendon, directed backwards and outwards, and attached to the femur, tibia, and inner part of the pelvic bone.

(1.) The internal or pyramidal muscle, or part (fig. 17, b, fig. 18 b), arises abruptly from a thick transversely oval tendon (about 1 inch of which is present) about the thickness of the thumb. The tendon, however, is continued on the deep aspect of the muscle to the end of the pelvic bone, and expands on the bone for 3 inches outwards. The inner part of this tendinous insertion is as large as a somewhat flattened little finger, but, at least in this specimen, does not appear to correspond to the fibrous tuft noticed in some of the specimens as continued from the cartilaginous end of the bone. The deep portion of the muscle arises mostly in an abrupt manner from the rounded tendon, but also from the continuation of the tendon to the pelvic bone; forms a flattened pyramid, 2½ inches by 1 inch in thickness at the middle, and is inserted mainly into the pelvic bone for 3 inches along the anterior border and under surface, and by its outer portion, about a fourth of the whole, to the femur, along its distal 1½ to 2 inches. The superficial part of the muscle arises abruptly from the tendon, 4 inches from the femur, as two bundles, each 1 inch thick, passing back in pyramidal form, the outer and larger to be inserted to the distal 3 inches of the anterior border of the femur; the inner, not so broad as the outer, to be inserted into the angle of the femur, the capsule of the knee, and a little upon the tuberosity of the tibia.

(2.) The external or great muscle (figs. 13, 14, and 18, b), five to six times larger than the internal, shows no subdivision into strata till close to its insertion, which is to the anterior border of the body and neck of the femur, for about four inches, and to the anterior border of the corresponding part of the pelvic bone.
also reaching a little on its under surface and outwards to the promontory. This great muscle approaches the outer and middle parts of the femur with an obliquity inwards, while the pyramid-like muscle is directed obliquely outwards to the inner part of the femur, and more directly backwards to the knee joint. Taking the two masses together, the pelvic bone has most of it at the outer part, rather the least at the inner part, but on the whole rather more of it is attached to the pelvic bone than to the femur.

In none of the other specimens was there much of the length of this mass present, and perhaps it was for this reason that no trace was seen of the separation into the two muscles above described. In the half-grown male, the section of the mass, at two inches in front of the pelvis, is 7 inches across, with an average thickness of 2 inches—thicker internally, less externally. In this specimen, No. I., the mass here, and when cut longitudinally, shows no appearance of separation even into femoral and pelvic strata till close to the bones. The deeper stratum is attached to the whole breadth of the beak of the pelvic bone, including the cartilage internally, and as far out as the middle of the promontory; the attachment is to the border and a little way on both surfaces of the bone, the fibres fleshy to near the attachment, except the part on the under aspect of the bone near the promontory, where it is tendinous. To the femur it is attached to the whole length of the body and outer half of the neck, the most internal part by oblique tendinous fibres, the rest of the insertion fleshy very close to the femur, and attached by short tendinous bundles to the anterior border and over the anterior third of the superficial surface of the body of the bone. To the tibia it is attached at the anterior angle and a little way along the inner border, and in front of this it is attached to the capsule of the knee. Taken as a whole, at the outer part of the mass, most of it goes to the pelvic bone; across the middle, most of it is attached to the femur; and the very inner part goes entirely to the femur and tibia; so that, in this subject, the greater part of the mass, probably about \(\frac{2}{3} \) of it, goes to the femur and tibia. The part to the tibia is, on section, 1 inch by \(\frac{1}{4} \) inch.

(3.) In contact with the deep aspect of this trunk mass, is a flat expanded muscular layer, the broad sheet-like tendon of
which is attached to the pelvic bone. This tendon, with muscular fibres attached, is seen in figs. 17 and 14, c, and the narrow strap-like continuations of it, over the femur, are seen in figs. 13 and 18, c. In No. II., in which it was more fully seen, this tendon, 8 inches in length and 2 in breadth, is opposite the outer \(\frac{2}{3} \) of the trunk mass. The insertion to the pelvic bone is obliquely across the outer \(\frac{2}{3} \) of the upper surface of the transverse part of the pelvic bone; and, beyond the pelvic bone, turning round the outer edge of the great mass and playing over the promontory, it sends a strap-like continuation which divides into two bands. One of these curves inwards across the neck of the femur to be inserted at or near the trochanter; the other passes backwards over the head of the femur, which it compresses on the outer side, and then skirting along the outer edge of the pelvic bone, and adhering to the longitudinal capsular muscles, finally joins the outer bundles of the caudal muscular mass. The direction of the sheet-like tendon is backwards and inwards, like that of the muscular fibres which end in it. Of these there was present a portion 6 inches broad, 2 inches long, and over \(\frac{1}{2} \) inch thick. On its under surface was another muscular portion, 4 inches long, 2 inches broad, and \(\frac{1}{4} \) to \(\frac{1}{6} \) inch thick, directed backwards and outwards, and continued into the strap-like tendon.

Without a knowledge of the other connections of these anterior muscles, their homology must remain uncertain. The sheet-like tendon and muscle suggest the external oblique of the abdominal wall; but the layer, or portion, crossing it diagonally, is rather incompatible with that view (being on the wrong side to represent an internal oblique), unless it be merely a part the direction of which is modified for the strap-like continuation. If the pyramid-like bunch is a pyramidalis abdominis, and the great mass external to it the rectus abdominis, their continuation to the femur is remarkable. If these are adductor and other muscles of the quadrupedal femur continued upwards, that would imply a very remarkable change of the anterior attachments. The observations of authors on the muscles in toothed cetaceans, so far as known to me, throw no light on the nature of these muscles. The conditions are greatly altered in Mysticetus by the presence of a thigh bone and the accompanying transverse part of the pelvic bone. But whatever the nature of these
muscles, they will act powerfully, their general action being to advance the pelvis either directly or by pulling on the femur. The pyramid-like muscle will pull obliquely forwards and inwards, the flat muscle obliquely outwards, the great intervening mass with, as far as can be judged from the portion present, a little obliquity outwards. The pelvis will be moved forwards and backwards by the alternate action of these and the caudal mass, or be fixed by their joint action. The very slight extent to which movement of the femur on the pelvis is allowed to take place accords with the very little subdivision of the trunk mass as it passes to these two bones. The action of this great mass on the femur must therefore take effect on the pelvis, doing so through especially the great posterior ligament of the femur. When the mass is pulled, causing advance of the femur, there is a tendency of the hinder edge of the femur to rise (rotation inwards), which is checked chiefly by the same ligament; and there is a backward projection of the head of the femur, which is opposed by the tightening of the strap-like tendon. The action of the considerable bundle which pulls by the tibia is soon resisted by the fibrous structures which attach the tibia posteriorly.

22. Muscles passing from the Pelvic Bone to the Femur.—These muscles may be divided into those which encapsule the head of the femur and those which pass to the body of the bone.

(a.) The capsular muscles are three in number—two longitudinal, one below and one above; and one transverse, situated above.

(1.) The inferior longitudinal capsular muscle (figs. 13 and 17, c) arises behind from the pelvic bone, as far back as the anterior fibres of the great caudal mass, and internally from the outer side of the great posterior ligament of the femur. In the half-grown male the flesh is about 3 inches in length and \(\frac{3}{4} \) inch in breadth. Passing upon the head of the femur it becomes ten-dinous at the middle of the head, appearing at first to be attached to the head, and it may be partially so, but on being divided the tendon proper may be dissected off the head, and is seen to be continued forwards and outwards to be inserted into the pelvic bone on the dorsal aspect, in front of the head of the femur. The muscle encapsules the head on the under and outer aspects, and partly on the dorsal aspect. Internally, a thin expansion is con-
continued from the muscle to the neck of the femur, filling up the triangular space between the muscle and the great ligament of the femur. In No. III. this expansion was continued inwards over the fore part of the great ligament, to be attached to the whole length of the posterior border of the shaft of the femur.

(2.) The superior longitudinal capsular muscle (fig. 14, n), beginning fleshy on the upper aspect of the pelvic bone, passes backwards along the outer side of the bone. Like the last muscle, it loops longitudinally from one part of the pelvic bone to another, and binds the head of the femur on its upper aspect. Along the outer edge of the bone it is, in the half-grown male, about the same breadth as the inferior muscle (3/4 inch); in the full-grown subjects (Nos. II. and III.), about 1 1/2 inch broad, and at the fore part, where, after arising by five or six large bundles, it spreads on the bone, the flesh is 3 1/2 inches broad and 1/2 to 3/4 inch thick. Its origin occupies more than the outer half of the angular region of the bone, between the promontory externally and the insertion of the sheet-like tendon, the oblique line of attachment of which may be recognised on the macerated bone. Posteriorly, becoming tendinous, it is inserted partly into the bone, but largely runs against the outer part of the caudal mass, in common with the continuation of the strap-like tendon which covers it. Part of the caudal mass, as large as a couple of fingers, arises from the tendon of this capsular muscle, and is pulled outwards by it. This gives the caudal mass a pull upon the fore part of the pelvic bone, and might be regarded as an accessory origin to that mass, but the piece of tendon intervenes, and the adaptation seems rather to be that of giving tension to the connecting bundles, and thus more effectually binding down the head of the femur.

(3.) The transverse capsular muscle is on the upper aspect. As seen in No. III., it is triangular in form, the flesh 3 inches in length, 1/4 inch thick; in breadth 3 inches at its origin from the pelvic bone, contracted to 1 inch where it becomes tendinous half-way across the head of the femur. The tendon adheres, and is partly attached, to the head of the femur externally, but when divided can be dissected onwards round the head, as a broad strap expanding over the whole of the under aspect of the head, and terminating on the periosteum where the head joins
the neck. This muscle was found only in No. III. Although Nos. I., II., and IV. were carefully dissected at this part, no trace of this muscle was seen. The great projection and great size of the head in No. III. may possibly account for the presence or great size of this muscle in it.

The head of the femur is thus very effectually enclosed and bound in by the muscles now described. Besides the possibly only occasional transverse muscle found in No. III., these dissections show the presence of three normal encapsulating structures,—the inferior and superior longitudinal muscles, muscular in the greater part of their length (also mixed with a good deal of fibrous tissue), binding in the head on the under and upper aspects, and, by the union of their contiguous margins, on the outer aspect also; and along the outer side, superficial to these, the continuation backwards of the strap-like tendon, attached behind to the outer side of the caudal mass. This strap, not itself muscular, is made tense by the action of the caudal and anterior trunk masses which it connects, and will not only bind the head of the femur, but enable these masses to press inwards the whole pelvic bone, while they pull on its fore and back parts. The capsular muscles may be regarded as to some extent representing the group of external rotator muscles of the quadru-pedal hip.

The tendinous capsule thus formed for the head of the femur is the functional capsule, but is not lined by a synovial bursa. The fibrous surface of the head is smooth, but the inner surface of the capsule is lined by flocculent areolar tissue, giving the head sufficient freedom for its limited movements. This quasi-cavity round the head extended, in No. III. (fig. 17), forwards about 1 inch beyond the head, so that the anterior ligament of the head is seen within it; and inwards to the neck, being limited by the insertions of the capsular muscles. It was purely tendinous on the inner surface, externally muscular as above described. It was \(\frac{1}{8} \) to \(\frac{1}{6} \) inch in thickness, the strap-like tendon forming an additional stratum on the outer side.

(b) The muscles from the pelvic bone to the body of the femur are four in number; one behind, expanded and thin, reaching also to the tibia (seen in fig. 13, g'), and three from the fore part of the pelvic bone (seen in fig. 17, h, \(h^1 \), \(h^2 \)). One of these is on
the under surface of the femur, and two occupy an interosseous position, one directed inwards, the other directed outwards to the femur. While each of these muscles is more or less of a flexor, the muscle below the femur adducts, and may be termed the abductor; the two between the bones adduct, and may be termed the internal and external adductors.

(1). The abductor (fig. 17, h) arises from the promontory close in front of the acetabulum, and from the anterior ligament of the head, passes obliquely inwards and backwards and is inserted on the under surface of the femur near the trochanter. It is triangular in form; length along the middle 3½ inches, breadth at origin 1½ inch, at insertion 2 inches; thickness at middle ½ to ⅛ inch. In No. I. it formed a 1-inch equilateral triangle. The outer edge of the muscle adheres to the tendinous capsule, and will assist so far in binding in the head of the femur.

(2). The external adductor arises a little in front of the last muscle, and is inserted on the upper surface of the body of the femur not far from the anterior border. In the figure (fig. 17, h) it looks like the fellow of the last muscle, passing to the other side of the femur; but its origin may extend inwards on the beak, making the muscle broader and the fibres shorter and less transverse than in the figure. In the half-grown male it was 3½ inches in breadth, the fibres 1½ in length. In No. V. the breadth was 1½, the length 2 inches. The muscle may be partially divided into an outer and an inner part, and the insertion, instead of being on the deep surface, may be on the anterior border and some way on the under surface, as it was in No. VII. The length and breadth in this case were both 2½ inches, the thickness ½ inch. The insertion of the great trunk mass to the femur is between this muscle and the abductor.

(3). The internal adductor (fig. 17, h²), is arranged like an intercostal muscle, the fibres sloping backwards and outwards. Its attachment along the surfaces of the pelvic bone and femur may be for 5 to 6 inches; the length of the bundles about 2 inches, as seen from below, but seen on the deep aspect the external fibres are longer and more oblique. The origin extends along nearly the whole of the beak, and it may be on part of the
angular region of the bone, and may occupy all but the most anterior part of the surface. The insertion on the femur is along the deep surface of the shaft and part of the neck, towards the posterior border, but obliquely, so that the outer part is nearer the border than the inner. The thickness varies a good deal; in No. VII. it had the unusual thickness of 1 inch, and was composed of two strata enclosing the deep interosseous ligament. In No. II., a prolongation of this muscle, as thick as a thumb, went back for 4 inches along the deep surface of the great posterior ligament; the same in Nos. III. and V., but not nearly so large.

Actions and Homology of these Muscles.—The two adductors, besides adducting, flex, rotate out, and cause some gliding, the internal inwards, the external outwards; the abductor, besides abducting, flexes, rotates in, causes some outward gliding, and assists in tightening the capsule of the head. But these movements are so limited, that the use must rather be that of steadying the bone in these directions. Their adducting power is the greatest and will press the femur against the cushion of muscle between the two bones, formed by the adductor muscles and by the part of the trunk mass which fills up the space between them and the femur. Homologically viewed, the internal adductor may be regarded as one of the adductors of the quadrupedal limb; the external adductor as an iliacus internus; the abductor as a portion of one of the deeper glutei.

It was interesting to see the condition of these muscles in No. V., in which the femur on one side was ankylosed. On the left side they were well developed, the internal adductor \(\frac{3}{4} \) inch in thickness. On the ankylosed side, the abductor was present but reduced to a fibrous condition, and adhering by the whole of its deep surface; the external adductor had been mutilated, but part of its insertion remained in a muscular condition; the internal adductor was about as large as the same muscle on the movable side, but, on section, was seen to be more mixed with fibrous tissue, which formed about half the bulk of the inner part of the muscle. The muscular prolongation on the great posterior ligament was present, 3 inches in length.

(4). The posterior muscle of the body of the femur (fig. 13, y),
is expanded and thin, and is aponeurotic as well as muscular. In the half-grown male, it occurred as a stratum of muscular fibre supported on its deep surface by an aponeurotic stratum. It arose externally from the inner side of the great posterior ligament of the femur, posteriorly by a narrow part from the hinder end of the pelvic bone, and internal to this from the horse-shoe raphé for several inches, opposite the levator ani and nearly as far in as it. The fibres pass forwards and inwards to be inserted at the posterior edge of the femur from the point of attachment of the great posterior ligament inwards to the capsule of the knee, the most internal fibres to the posterior or outer border of the tibia. It is from 2 to 3 inches in breadth, about \(\frac{1}{2} \) inch thick, the aponeurotic stratum somewhat thinner. The longest fibres, those to the femur, are 6 inches in length; the shortest, those to the tibia, 2 inches. Fully half of the muscle goes to the tibia. It extends the femur and flexes the knee joint, and the aponeurotic stratum gives it great strength in resisting the forward movement of the femur and the inward movement of the tibia. Homologically viewed, it may be regarded as an adductor magnus and a hamstring, proceeding from their quadrupedal origin at the tuber ischii.

In two of the adult female subjects, Nos. II. and III., in which this structure had not been mutilated, it was entirely aponeurotic and more extensive; reaching outwards, over the fore part of the great posterior ligament, so as to receive origin from the pelvic bone, and the fibrous structures over it; and reaching backwards to join the interpelvic ligament. There it conceals the great genital mass, and serves as an aponeurosis to the earlier part of that mass, some of the posterior fibres of the mass arising from its deep surface; but it is quite separate from the mass before it reaches the femur and tibia. This aponeurosis is represented in fig. 18; while fig. 17 shows the parts brought into view by its removal. It was about \(\frac{1}{2} \) inch thick, composed of coarse fibrous bundles, having the same direction as those of the muscle in No. I., and serves as a strong resisting structure to forward movement of the femur and tibia. In No. III., on removing this aponeurosis, a distinct red muscular expansion was seen proceeding from the inner edge of the inferior longitudinal capsular muscle, concealing the fore part of the great
ligament, and inserted into the whole length of the femur (seen in fig. 17). It adhered to the aponeurosis for 2 inches before it reached its insertion at the posterior border of the shaft of the femur, but at the neck of the bone the insertion was some way forwards on the surface, and separate from the aponeurosis, which was here continuous with the superficial part of the tendinous capsule of the head of the bone.

23. The Muscular and Tendinous Connections of the Tibia.—The last described expanded muscle and aponeurosis, or aponeurosis only, is attached along the outer or posterior edge of the tibia. In Nos. II. and III. a special band of aponeurosis (shown in fig. 18), passing to the tibia, was placed more transversely and superficially, its fibres at first decussating with the fibres of the general aponeurosis, but at last fused with the fibres of the tibial part of the aponeurosis. Along the inner edge of the tibia is attached an aponeurosis, cut short to half an inch in these specimens, the fibres apparently directed inwards and backwards. To the anterior end, as noted above, is attached the insertion of the innermost part of the pyramid-like muscle. To the posterior end or tip of the tibia is attached what may be termed the longitudinal tibial band. This band had been cut short in all the specimens, only from 1 to 4 inches of it remaining, except in No. III., in which it was present in its whole length (as seen in fig. 18, k, k), extending backwards to the great interpelvic ligament. It is a flat strap-like band of white fibrous tissue disposed longitudinally; length 10 inches; breadth, at its attachment to the tibia, \(\frac{1}{2} \) inch; at the middle, \(\frac{3}{4} \) inch; at its posterior attachment, about 2 inches; thickness, \(\frac{1}{8} \) to \(\frac{1}{6} \) inch; in transverse section, flat on the deep surface, convex superficially.

On the deep aspect of this tibial band, and attached to it, between it and the great aponeurosis above described, is a stratum of muscular bundles, forming a superficial perineal muscle. As represented in fig. 18, n, n, these bundles commence on the transverse part of the great interpelvic ligament and the aponeurosis in front of it, and pass forwards and inwards under cover of the hinder half of the tibial band, showing themselves again along the whole length of the inner side of the band where they had been divided. The part here present forms a triangu-
lar stratum, 4 inches in breadth at the base, 5 in length, and \(\frac{1}{6} \) inch in thickness. The flattened bundles are partly continued past the tibial band, partly attached to it, in a proportion which it was not easy to determine, but a good many, especially those nearest the tibia, arise from the band on its deep surface and inner side, and as far forwards as within an inch of the tibia (seen at o, fig. 18); in No. II. still nearer the tibia, and in No. V., they arose quite close to it. On dividing the tibial band, it is seen that it is as it were split by this muscular stratum, the deeper layer lining the deep surface of the superficial muscular stratum. The tibial band is composed mainly of longitudinal fibres, but connected with the great aponeurosis external to it, to which it forms a kind of longitudinal edging. The aponeurosis and the deep layer of the tibial band adhere behind to the great genital mass as its covering aponeurosis, but as they approach the tibia they are quite free from it, a wide space filled with loose tissue intervening. The outer edge of the superficial layer, or tibial band proper, is not free, but, like the tibia, receives the aponeurosis, being distinguished from it by the direction of its fibres, and there may have been a similar expansion joining its inner edge. This superficial muscle will have some effect in tightening the tibial band, but the connection seems rather to furnish an additional origin to the muscle, which will become a fixed point for muscular action when the tibial band and aponeurosis are tightened by the action of the anterior muscular mass. In the male subjects, Nos. I. and VII., only a short part of the band was left attached to the tibia, and no muscular bundles were noticed.

The longitudinal tibial band being in continuity with the cartilaginous tibia, might be looked on as a fibrous representative of that bone; or, together with the tibial part of the aponeurosis external to it, as representing the hamstring muscles, attached proximally to near the hinder end of the pelvis, distally to below the knee joint.
EXPLANATION OF PLATES.

All the figures are reduced to one-sixth.

Figures 1, 3, 5, 8, and 10, show the pelvic bone, \(P \); the femur, \(F \); and the tibia, \(T \); of the left side, from five Right-Whales; seen on the under aspect, and placed in their natural relation, except that the tibia is a little separated from the femur. Figs. 2, 4, 6, and 9, show the femur belonging respectively, to figs. 1, 3, 5, and 8 seen edge-ways from before; the surface in relation with the pelvic bone uppermost. Fig. 7 shows the pelvic bone and femur of the right side, from another Right-Whale, the femur raised from the pelvic bone. The shaded parts at both ends of the femur, and at anterior end of the beak of the pelvic bone, show the rough parts, on the macerated bones, which were covered with cartilage. The like marking on the promontory, in figs. 1, 8, and 10, are merely rough surfaces which did not support cartilage. The longitudinal line on the body of the pelvic bone in figs. 1, 3, 5, and 8, shows the position of the longitudinal dividing ridge.

Fig. 1. From Whale No. II., female 58 to 60 feet long. On the pelvic bone, \(a \), body; \(b \), beak; \(c \), angle; \(d \), promontory; \(e \), acetabular area, partly above and below, partly concealed by head and neck of femur. On the femur, \(g \), head, succeeded by the neck; \(h \), trochanter; \(i \), anterior tubercle; \(j \), tibial condyle. On the tibia, \(m \) and \(n \), anterior and posterior angles of the base, the articular surface not seen owing to its oblique plane.

Fig. 2. Femur of same, seen from anterior margin. The position of the anterior tubercle is marked.

Fig. 3. From Whale No. V.; female 48 feet long; \(g \), very reduced head; \(e \), acetabular area, marked by dotted line. Femur of right side of this whale was anchylosed to pelvic bone at hip-joint. This fig. and fig. 1 show the characteristically broad and flat posterior end of the pelvic bone in the female.

Fig. 4. Femur of same, seen from anterior margin, and a little from under aspect, to show prismatic form of the bone, and the extreme thinness of the reduced head. The line shows the exact anterior margin.

Fig. 5. From Whale No. IV.; female about 62 feet long; \(e \), acetabular area, so far as not concealed by neck of femur.

Fig. 6. Femur of the same, seen from anterior margin, showing very bent form of this femur where neck and body meet. The trochanter is seen to project upwards as well as backwards.

Fig. 7. From Whale No. IX.; a large male; \(o \), rough surface on abrupt posterior end of body, for attachment of interpelvic ligament; \(e \), acetabular area on promontory, marked by dotted outline; \(b \), exceptionally short and narrow beak; the femur raised from natural position to show beak; \(i \), very marked and rough anterior tubercle on this femur; \(p \), deeply excavated end of femur which had supported distal cartilage.

Fig. 8. From Whale No. VII.; male 48 feet long. Shows head of femur lodged in a deep acetabulum, overhung by a rough reverted ledge of promontory. Characteristic
distal end of femur, anterior third bevelled for muscular attachment, posterior two-thirds supporting knee-joint; the whole rough where it was covered by distal cartilage of femur. Tibia showing characteristic form, anterior and posterior angles at base, and undulations on the borders, two concavities on inner, one on outer, border.

Fig. 9. Femur of same, seen from anterior margin. The roughness on large and well-formed head shows where it was covered by cartilage. At distal end, roughness on bevelled anterior third, as seen from before.

Fig. 10. From Whale No. VIII.; male, of good size, but not of largest size; g dotted line showing where head is firmly anchylosed to pelvic bone. The two lines, g, converging behind the head, mark projecting platform of pelvic bone on which femur is anchylosed; femur of right side was similarly anchylosed; o, rough surface on abrupt posterior end of body for attachment of interpelvic ligament. Thick rounded form of body, characteristic of male pelvic bone, seen in the three figures, 7, 8, and 10.

Figs. 11 and 12. From Whale No. L; half-grown male, 35 feet long. Under and upper views showing pelvic bone, femur and tibia, and their ligaments, the interpelvic ligament, and relation of penis to pelvic bone.

Fig. 11. Under view; P, pelvic bone; P', femur; T, tibia; a, great posterior ligament of body of femur; b, posterior ligament of head of femur; c, anterior ligament of head, and d, external anterior ligament of body of femur; g, capsular ligament of knee-joint. On right side, h, line of junction of anterior cartilage of pelvic bone; i, fibrous tuft attached to end of cartilage; k, tibial band attached to apex of tibia; l, distal cartilage of femur, as seen on section, dotted line marks place of junction; m, cartilage of head of femur, as seen on section, but cap of cartilage extended further inwards on head; n, acetabular cartilage, ovoid form marked by dotted line, partly hidden by neck and head of femur; o, posterior cartilage of pelvic bone, limits marked by dotted lines; q, attachment of interpelvic ligament to cartilage of hinder end of pelvic bone; r, interpelvic ligament; s, s, crus penis, showing its ovoid enlargement on this aspect; u, corpus cavernosum after union of right and left crus; v, corpus spongiosum urethrae; w, bulb of corpus spongiosum, its hinder end concealing part of interpelvic ligament; x, attachment of white fibrous septum of compressor muscles along middle line of bulb and corpus spongiosum; y, y, attachment of horse-shoe septum between the compressor muscles, across crura and bulb; z, part of horse-shoe septum entire, showing its depth and tapering to horse-shoe raphe on surface.

Fig. 12. Upper view of same; h, o, lines of junction of anterior and posterior cartilages of this half-grown pelvic bone; u, part of acetabular cartilage covering narrow part of pelvic bone on this aspect; r, r, interpelvic ligament fully seen, and continuous with it, the triangular ligament between the crura; x, urethra, surrounded by circular and longitudinal striped muscular layers; in space between urethra and triangular ligament, are seen, on left side, three large arteries in section; s, crus penis, without the ovoid enlargement on this aspect; a number of arterial perforations are shown on left crus; u, corpus cavernosum.

Figs. 13 and 14. From same Whale as figs. 11 and 12, showing under, fig. 13, and upper, fig. 14, view of the muscles connected with same parts; and, fig. 15, a transverse section of the penis and its muscular surrounding.

Fig. 13. a, posterior or caudal muscular mass, attached to pelvic bone; b, anterior or trunk muscular mass, attached to pelvic bone, femur, and tibia; c, strap-like tendon, continued from flat tendinous layer concealed by the trunk mass, seen sending curved process inwards to body of femur, and another process back over head of femur to pelvic bone and caudal mass; d, inferior longitudinal capsular muscle, its tendon covering head of femur, and thin continuation inwards as far as great posterior ligament, e; to inside of latter, the thin posterior muscle, g, of body of femur and tibia, seen coming from great posterior ligament, pelvic bone, and horse-shoe raphe; h, rectum, its circular and longitudinal muscular layers seen in transverse section; i, remains of
anterior part of levator ani muscle; \(k, k \), right and left rope-like muscle, retractor penis, of pale unstriped muscular fibre; \(l, l \), great anterior compressor muscle, united to its fellow at median raphe; dotted line at its posterior origin shows how far it arises over pelvic bone; \(m \), posterior compressor muscle, united to fellow by median raphe; the white semi-circular line between the two compressor muscles is the horse-shoe raphe, the superficial edge of the concealed horse-shoe septum.

Fig. 14. Upper view of same; the same letters refer to the same parts as in fig. 13; the flat tendinous layer, \(c \), above the trunk muscular mass, is fully seen. Additional references are, \(a \), superior longitudinal capsular muscle, seen binding head of femur on this aspect; \(o \), part of surface of corpus cavernosum not covered by great compressor muscle; \(r, r \), triangular ligament, pierced by the urethra, \(x \); \(s, s \), neck of bladder, surrounding urethra; several large arteries are seen in section, piercing inter-pelvic ligament in front of neck of bladder; \(k \), rope-like muscle, seen arising mainly from neck of bladder, partly from walls of rectum, and turning forwards round hinder edge of interpelvic ligament; \(t \), fibrous bundles suspending rectum; \(u \), oval space between origins of the suspensory bundle.

Fig. 15. Transverse section of penis and surrounding great compressor muscle, at about 3 inches in front of horse-shoe septum. Shows the laterally compressed form of the penis within this muscle. The white part is dense fibrous tissue, enclosing, above, \(a \), the erectile tissue of the fused corpora cavernosa, with a large dorsal vein or veins; and below, the erectile tissue of the corpus spongiosum, containing, near its upper part, the very distensible urethra. Above the corpus cavernosum is seen the shallow median septum between it and the dorsal raphe; below, is seen the deeper median septum, also of white fibrous tissue, between the corpus spongiosum and the inferior raphe. The section shows the great thickness of the enclosing muscle, at the sides and below. The form of the erectile medulla of the corpus cavernosum, and of the corpus spongiosum, is seen in figs. 13 and 14.

Figs. 16, 17, and 18. From Whale No. 111.; female, 48 feet long; three views of under aspect, left side; showing, fig. 16, the ligaments; fig. 17, the deep muscles; fig. 18, the superficial muscles attached to the pelvic bone, femur and tibia.

Fig. 16. \(a \), great posterior ligament of body of the femur (in this fig., this ligament is diagrammatic, it was naturally much more expanded, and the trochanter was, accordingly, scarcely present); \(b \), posterior ligament of head of femur; \(c \), anterior ligament of head; \(d \), external anterior ligament of body; \(e \), internal anterior ligament of body of femur; \(m \), cartilage of head of femur; dotted line farther in shows outer edge of acetabular cartilage; \(h \), anterior cartilage of pelvic bone; \(r, r \), interpelvic ligament (female); \(s \), antero-posterior section of this great ligament, showing its breadth and thickness; \(u, u \), curved line on ligament, in front of which it is excavated for attachment of great genital muscular mass; dotted line shows line of inner edge of pelvic bone, concealed by this attachment of interpelvic ligament.

Fig. 17. \(a \), caudal muscular mass; \(c \), the flat expanded muscle and tendon seen on removing great anterior muscular mass; to right hand, a smaller stratum is seen decussating with the greater, and going to strap-like tendon; \(b \), deep part of the pyramidal portion of anterior muscular mass, inserted on pelvic bone; \(d \), inferior longitudinal capsular muscle; the tendinous capsule of the head of the femur, formed here by this muscle and the strap-like tendon, is seen slit open and hooked outwards, exposing the head, large in this individual, separated from the capsule by loose connective tissue; the thin inward expansion of this posterior capsular muscle is seen, in this individual, extending over great posterior ligament, \(e \), and passing to nearly whole length of femur; \(h \), abductor muscle of femur; \(h \), external adductor muscle; \(k \), internal adductor muscle; \(l \), capsular ligament of knee-joint; \(k \), tibial band; \(l, l \), great genital muscular mass; \(r \), interpelvic ligament.

Fig. 18. \(a \), caudal muscular mass; \(b \), anterior muscular mass, external and greater
portion; \textit{b}, superficial parts of pyramidal portion of anterior muscular mass, seen coming from a rounded tendon and inserted on femur and tibia; \textit{c}, strap-like tendon seen also in figs. 13, 14, and 17; \textit{g}, \textit{g}. posterior aponeurosis of femur and tibia, partly muscular in fig. 13, concealing great genital muscular mass; stronger strap-like portion of it, seen passing to tibia; \textit{h}, aponeurosis attached to inner border of tibia; \textit{i}, capsular ligament of knee; \textit{k}, \textit{k}. tibial band; \textit{m}, perineal muscular bundles arising from interpelvic ligament; \textit{n}, \textit{n}. bundles of flat superficial perineal muscle, partly splitting, partly arising from, the tibial band; \textit{o}, most anterior of the superficial perineal muscular bundles, arising entirely from the tibial band. Dotted lines in this figure show position of the head of pelvic bone and of encapsuled head of femur.
RUDIMENTARY HIND-LIMB OF GREENLAND RIGHT-WHALE

THE MUSCLES. MALE.